
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Bacterial Biofilms on Post-sinus Surgical Outcomes. American Journal of Rhinology & Allergy, 2008, 22, 1-6.	2.2	182
2	Confocal Scanning Laser Microscopy Evidence of Biofilms in Patients With Chronic Rhinosinusitis. Laryngoscope, 2007, 117, 1302-1306.	2.0	169
3	Modification of the lundâ€kennedy endoscopic scoring system improves its reliability and correlation with patientâ€reported outcome measures. Laryngoscope, 2014, 124, 2216-2223.	2.0	169
4	Characterization of Bacterial and Fungal Biofilms in Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2009, 23, 556-561.	2.0	164
5	The International Frontal Sinus Anatomy Classification (IFAC) and Classification of the Extent of Endoscopic Frontal Sinus Surgery (EFSS). International Forum of Allergy and Rhinology, 2016, 6, 677-696.	2.8	139
6	Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients. Frontiers in Cellular and Infection Microbiology, 2017, 7, 418.	3.9	132
7	Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to <i>Staphylococcus aureus</i> . JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 723.	2.2	105
8	Reduced Levels of Lactoferrin in Biofilm-Associated Chronic Rhinosinusitis. Laryngoscope, 2008, 118, 895-901.	2.0	67
9	Nasal Mucosa Expression of Lactoferrin in Patients With Chronic Rhinosinusitis. Laryngoscope, 2007, 117, 2030-2035.	2.0	64
10	The microbiome of otitis media with effusion. Laryngoscope, 2016, 126, 2844-2851.	2.0	62
11	Sinonasal Microbiome Sampling: A Comparison of Techniques. PLoS ONE, 2015, 10, e0123216.	2.5	60
12	The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2037-2049.	5.7	55
13	Long-term outcomes in primary powered endoscopic dacryocystorhinostomy. British Journal of Ophthalmology, 2014, 98, 1678-1680.	3.9	53
14	Therapy of Sinonasal Microbiome in CRS: A Critical Approach. Current Allergy and Asthma Reports, 2017, 17, 59.	5.3	50
15	Role of fungi in chronic rhinosinusitis through ITS sequencing. Laryngoscope, 2018, 128, 16-22.	2.0	47
16	<i>Staphylococcus Aureus</i> V8 protease disrupts the integrity of the airway epithelial barrier and impairs ILâ€6 production in vitro. Laryngoscope, 2018, 128, E8-E15.	2.0	47
17	Next Generation Sequencing and the Microbiome of Chronic Rhinosinusitis. Annals of Otology, Rhinology and Laryngology, 2016, 125, 613-621.	1.1	32
18	The Association Between Disease Severity and Microbiome in Chronic Rhinosinusitis. Laryngoscope, 2019, 129, 1265-1273.	2.0	32

#	Article	IF	CITATIONS
19	Medical therapy vs surgery for recurrent acute rhinosinusitis. International Forum of Allergy and Rhinology, 2015, 5, 667-673.	2.8	31
20	Pseudomonas aeruginosa Exoprotein-Induced Barrier Disruption Correlates With Elastase Activity and Marks Chronic Rhinosinusitis Severity. Frontiers in Cellular and Infection Microbiology, 2019, 9, 38.	3.9	31
21	Corynebacterium accolens Has Antimicrobial Activity against Staphylococcus aureus and Methicillin-Resistant S. aureus Pathogens Isolated from the Sinonasal Niche of Chronic Rhinosinusitis Patients. Pathogens, 2021, 10, 207.	2.8	31
22	The effect of neutrophil serine proteases on human nasal epithelial cell barrier function. International Forum of Allergy and Rhinology, 2019, 9, 1220-1226.	2.8	29
23	Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis. Translational Research, 2019, 206, 41-56.	5.0	27
24	Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain. Frontiers in Cellular and Infection Microbiology, 2016, 6, 187.	3.9	26
25	Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production. Scientific Reports, 2018, 8, 11325.	3.3	26
26	In vitro safety evaluation of a povidoneâ€iodine solution applied to human nasal epithelial cells. International Forum of Allergy and Rhinology, 2020, 10, 1141-1148.	2.8	26
27	T regulatory and Th17 cells in chronic rhinosinusitis with polyps. International Forum of Allergy and Rhinology, 2016, 6, 826-834.	2.8	25
28	Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2021, 147, 168-178.	2.9	25
29	Association of intracellular <i>Staphylococcus aureus</i> with prognosis in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2016, 6, 792-799.	2.8	24
30	Identification of the Bacterial Reservoirs for the Middle Ear Using Phylogenic Analysis. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 155.	2.2	24
31	In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash. International Forum of Allergy and Rhinology, 2017, 7, 1170-1177.	2.8	21
32	Tertiary lymphoid organs in recalcitrant chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 139, 1371-1373.e6.	2.9	21
33	Microbiotyping the Sinonasal Microbiome. Frontiers in Cellular and Infection Microbiology, 2020, 10, 137.	3.9	21
34	Partial resection of the middle turbinate during endoscopic sinus surgery for chronic rhinosinusitis does not lead to an increased risk of empty nose syndrome: a cohort study of a tertiary practice. International Forum of Allergy and Rhinology, 2018, 8, 959-963.	2.8	20
35	Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases <scp>ZO</scp> â€1. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2095-2097.	5.7	20
36	Topical Colloidal Silver for the Treatment of Recalcitrant Chronic Rhinosinusitis. Frontiers in Microbiology, 2018, 9, 720.	3.5	20

#	Article	IF	CITATIONS
37	Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis: phase 1 randomized, singleâ€blinded, placeboâ€controlled trial. International Forum of Allergy and Rhinology, 2019, 9, 1470-1477.	2.8	20
38	The presence of virus significantly associates with chronic rhinosinusitis disease severity. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1569-1572.	5.7	20
39	Deferiprone has anti-inflammatory properties and reduces fibroblast migration in vitro. Scientific Reports, 2019, 9, 2378.	3.3	20
40	Unraveling the role of the microbiome in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2022, 149, 1513-1521.	2.9	20
41	A Radiological Study Assessing the Prevalence of Frontal Recess Cells and the Most Common Frontal Sinus Drainage Pathways. American Journal of Rhinology and Allergy, 2019, 33, 323-330.	2.0	19
42	Association between mucosal barrier disruption by <i>Pseudomonas aeruginosa</i> exoproteins and asthma in patients with chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3459-3469.	5.7	19
43	Chronic Rhinosinusitis with Polyps Is Characterized by Increased Mucosal and Blood Th17 Effector Cytokine Producing Cells. Frontiers in Physiology, 2017, 8, 898.	2.8	18
44	Sub-Inhibitory Clindamycin and Azithromycin reduce S. aureus Exoprotein Induced Toxicity, Inflammation, Barrier Disruption and Invasion. Journal of Clinical Medicine, 2019, 8, 1617.	2.4	18
45	<i>Staphylococcus aureus</i> biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 871-883.	2.8	18
46	Outcomes of revision endoscopic modified Lothrop procedure. International Forum of Allergy and Rhinology, 2016, 6, 518-522.	2.8	17
47	Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111675.	5.0	17
48	Intraocular Pressure Changes in Emergent Surgical Decompression of Orbital Compartment Syndrome. JAMA Otolaryngology - Head and Neck Surgery, 2015, 141, 562.	2.2	16
49	Barosinusitis: Comprehensive Review and Proposed New Classification System. Allergy and Rhinology, 2017, 8, ar.2017.8.0221.	1.6	16
50	Inducing a Mucosal Barrier–Sparing Inflammatory Response in Laboratoryâ€Grown Primary Human Nasal Epithelial Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 80, e69.	1.1	16
51	Acoustic drug delivery to the maxillary sinus. International Journal of Pharmaceutics, 2021, 606, 120927.	5.2	16
52	Extent of maxillary sinus surgery and its effect on instrument access, irrigation penetration, and disease clearance. International Forum of Allergy and Rhinology, 2019, 9, 1097-1104.	2.8	15
53	Anatomical considerations in endoscopic lacrimal surgery. Annals of Anatomy, 2019, 224, 28-32.	1.9	15
54	Inhibition of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> biofilms by quatsomes in low concentrations. Experimental Biology and Medicine, 2020, 245, 34-41.	2.4	15

#	Article	IF	CITATIONS
55	Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Pathology, 2022, 54, 453-459.	0.6	15
56	Sirtuin-1 Controls Poly (I:C)–Dependent Matrix Metalloproteinase 9 Activation in Primary Human Nasal Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 500-510.	2.9	14
57	Safety and Efficacy of Topical Chitogel- Deferiprone-Gallium Protoporphyrin in Sheep Model. Frontiers in Microbiology, 2018, 9, 917.	3.5	13
58	The International Classification of the radiological Complexity (ICC) of frontal recess and frontal sinus. International Forum of Allergy and Rhinology, 2017, 7, 332-337.	2.8	11
59	Increased IL-13 expression is independently associated with neo-osteogenesis in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1444-1448.e11.	2.9	11
60	Naive and Effector B-cell Subtypes are Increased in Chronic Rhinosinusitis with Polyps. American Journal of Rhinology and Allergy, 2018, 32, 3-6.	2.0	11
61	In vitro characteristics of an airway barrierâ€disrupting factor secreted by <i>Staphylococcus aureus</i> . International Forum of Allergy and Rhinology, 2019, 9, 187-196.	2.8	11
62	Barrier disruptive effects of mucus isolated from chronic rhinosinusitis patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 200-203.	5.7	11
63	Latest developments on topical therapies in chronic rhinosinusitis. Current Opinion in Otolaryngology and Head and Neck Surgery, 2020, 28, 25-30.	1.8	11
64	Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microbial Genomics, 2021, 7, .	2.0	11
65	Comparative Viral Sampling in the Sinonasal Passages; Different Viruses at Different Sites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 334.	3.9	10
66	A Scholarly Review of the Safety and Efficacy of Intranasal Corticosteroids Preparations in the Treatment of Chronic Rhinosinusitis. Ear, Nose and Throat Journal, 2021, 100, 295-301.	0.8	10
67	Prophage: a crucial catalyst in infectious disease modulation. Lancet Microbe, The, 2022, 3, e162-e163.	7.3	10
68	Preclinical Development of a Bacteriophage Cocktail for Treating Multidrug Resistant Pseudomonas aeruginosa Infections. Microorganisms, 2021, 9, 2001.	3.6	9
69	Effect of commercial nasal steroid preparation on bacterial growth. International Forum of Allergy and Rhinology, 2019, 9, 766-775.	2.8	8
70	Vascular Anatomy of the Inferior Turbinate and Its Clinical Implications. American Journal of Rhinology and Allergy, 2020, 34, 604-609.	2.0	8
71	The Use of Postoperative Antibiotics Following Endoscopic Sinus Surgery for Chronic Rhinosinusitis: A Systematic Review and Meta-analysis. American Journal of Rhinology and Allergy, 2021, 35, 700-712.	2.0	8
72	Remote Training of Functional Endoscopic Sinus Surgery With Advanced Manufactured 3D Sinus Models and a Telemedicine System. Frontiers in Surgery, 2021, 8, 746837.	1.4	8

#	Article	IF	CITATIONS
73	Endoscopic dacryocystorhinostomy and obstructive sleep apnoea: the effects and outcomes of continuous positive airway pressure therapy. Clinical and Experimental Ophthalmology, 2015, 43, 405-408.	2.6	7
74	The Microbiome of the Nasolacrimal System and Its Role in Nasolacrimal Duct Obstruction. Ophthalmic Plastic and Reconstructive Surgery, 2020, 36, 80-85.	0.8	7
75	Teaching Residents Frontal Sinus Anatomy Using a Novel 3-Dimensional Conceptualization Planning Software-Based Module. American Journal of Rhinology and Allergy, 2018, 32, 526-532.	2.0	6
76	Kappa arrageenan sinus rinses reduce inflammation and intracellular Staphylococcus aureus infection in airway epithelial cells. International Forum of Allergy and Rhinology, 2019, 9, 918-925.	2.8	6
77	Prevention of peridural adhesions in spinal surgery: Assessing safety and efficacy of Chitogel with Deferiprone in a sheep model. Journal of Clinical Neuroscience, 2020, 72, 378-385.	1.5	6
78	A Novel Rat Model to Test Intra-Abdominal Anti-adhesive Therapy. Frontiers in Surgery, 2020, 7, 12.	1.4	6
79	A prelacrimal approach technique to overcome the limitation of the narrow lacrimal recess. European Archives of Oto-Rhino-Laryngology, 2021, 278, 1885-1889.	1.6	6
80	Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in Allergy, 2021, 2, 692049.	2.8	6
81	APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms. Microorganisms, 2022, 10, 102.	3.6	6
82	Prelacrimal approach for nasolacrimal duct excision in the management of lacrimal system tumours. Orbit, 2019, 38, 308-312.	0.8	5
83	Green synthesized colloidal silver is devoid of toxic effects on primary human nasal epithelial cells in vitro. Food and Chemical Toxicology, 2021, 157, 112606.	3.6	5
84	In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity. Microbiological Research, 2022, 255, 126927.	5.3	5
85	<i>Staphylococcus aureus</i> small colony variants: Prevalence in chronic rhinosinusitis and induction by antibiotics. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2403-2405.	5.7	4
86	Tween 80 and its derivative oleic acid promote the growth of <i>Corynebacterium accolens and inhibit Staphylococcus aureus</i> clinical isolates. International Forum of Allergy and Rhinology, 2021, 11, 810-813.	2.8	4
87	Prevention of adhesions post-abdominal surgery: Assessing the safety and efficacy of Chitogel with Deferiprone in a rat model. PLoS ONE, 2021, 16, e0244503.	2.5	4
88	Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells. Toxicology Letters, 2021, 353, 27-33.	0.8	4
89	Discordant frequencies of tissueâ€resident and circulating CD180â€negative B cells in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2017, 7, 609-614.	2.8	3
90	Metallothionein-3 is a clinical biomarker for tissue zinc levels in nasal mucosa. Auris Nasus Larynx, 2021, 48, 890-897.	1.2	3

#	Article	IF	CITATIONS
91	Serratus anterior muscle free flap for endoscopic reconstruction of large and complex skullâ€base defects. International Forum of Allergy and Rhinology, 2022, 12, 124-127.	2.8	3
92	The anatomy of the foramina and efferent nerve fibers from the pterygopalatine ganglion in posterolateral nasal wall. Laryngoscope Investigative Otolaryngology, 2022, 7, 679-683.	1.5	3
93	Endoscopic Resection of Skull Base Teratoma in Klippel-Feil Syndrome through Use of Combined Ultrasonic and Bipolar Diathermy Platforms. Case Reports in Otolaryngology, 2017, 2017, 1-7.	0.2	2
94	Optimal primer selection for sinus microbiome profiling: A comparative analysis of the V1â€V3 and V3â€4 16S target regions. International Forum of Allergy and Rhinology, 2021, 11, 1698-1702.	2.8	2
95	Investigation of Kappa Carrageenan's mucoâ€adhesive, antibacterial, and antiâ€biofilm properties. International Forum of Allergy and Rhinology, 2022, 12, 302-305.	2.8	2
96	Reply to: In reference to: Medical therapy vs surgery for recurrent acute rhinosinusitis. International Forum of Allergy and Rhinology, 2015, 5, 1186-1186.	2.8	1
97	Orbital emphysema following endoscopic sinus surgery. Clinical and Experimental Ophthalmology, 2019, 47, 809-811.	2.6	1
98	Tertiary Lymphoid Organs: A Primer for Otolaryngologists. Laryngoscope, 2021, 131, 1697-1703.	2.0	1
99	What are the challenges in choosing pharmacotherapy for rhinosinusitis?. Expert Opinion on Pharmacotherapy, 2020, 21, 427-433.	1.8	1
100	Pediatric allergic fungal rhinosinusitis. Current Opinion in Otolaryngology and Head and Neck Surgery, 2021, Publish Ahead of Print, 510-516.	1.8	1
101	Association between viral infection and increased mucosal eosinophils and CD8 ⁺ CD103 ⁺ T cells in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2020, 10, 978-980.	2.8	Ο
102	Isolated Frontal Sinusitis and Anosmia: A Novel Presentation. Indian Journal of Otolaryngology and Head and Neck Surgery, 2021, 73, 389-391.	0.9	0
103	<i>In vitro</i> safety and antiâ€bacterial efficacy assessment of acriflavine. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1917-1920.	5.7	0
104	Trans-superior meatal surgery: A targeted approach for isolated posterior ethmoid diseases. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2022, 43, 103425.	1.3	0
105	Remote FESS Training with advanced manufactured 3D sinus models. Nihon Bika Gakkai Kaishi (Japanese) Tj ETG	2q1_1_0.78	84314 rgBT /O