
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 2016, 116, 10983-11060.	23.0	1,215
2	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
3	Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy and Environmental Science, 2012, 5, 5604-5618.	15.6	1,069
4	Designed Formation of Co ₃ O ₄ /NiCo ₂ O ₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society, 2015, 137, 5590-5595.	6.6	1,059
5	Selfâ€Templated Formation of Uniform NiCo ₂ O ₄ Hollow Spheres with Complex Interior Structures for Lithiumâ€Ion Batteries and Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 1868-1872.	7.2	713
6	Confining Sulfur in Doubleâ€Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 9592-9595.	7.2	692
7	Doubleâ€6helled CoMn ₂ O ₄ Hollow Microcubes as Highâ€Capacity Anodes for Lithiumâ€Ion Batteries. Advanced Materials, 2012, 24, 745-748.	11.1	665
8	Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1501333.	10.2	663
9	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 6417-6420.	7.2	650
10	Synthesis and Lithium Storage Properties of Co ₃ O ₄ Nanosheetâ€Assembled Multishelled Hollow Spheres. Advanced Functional Materials, 2010, 20, 1680-1686.	7.8	642
11	α-Fe ₂ O ₃ multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy and Environmental Science, 2014, 7, 632-637.	15.6	630
12	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627
13	Hollow Micro/Nanomaterials with Multilevel Interior Structures. Advanced Materials, 2009, 21, 3621-3638.	11.1	616
14	Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors. Small, 2005, 1, 566-571.	5.2	604
15	Formation of ZnMn ₂ O ₄ Ballâ€inâ€Ball Hollow Microspheres as a Highâ€Performance Anode for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 4609-4613.	11.1	603
16	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	18.7	603
17	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 3061-3070.	15.6	598
18	Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. CheM, 2018, 4, 972-996.	5.8	591

#	Article	IF	CITATIONS
19	TiO ₂ oated Multilayered SnO ₂ Hollow Microspheres for Dyeâ€&ensitized Solar Cells. Advanced Materials, 2009, 21, 3663-3667.	11.1	541
20	Formation of Onionâ€Like NiCo ₂ S ₄ Particles via Sequential Ionâ€Exchange for Hybrid Supercapacitors. Advanced Materials, 2017, 29, 1605051.	11.1	539
21	Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors. CheM, 2016, 1, 102-113.	5.8	525
22	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. Advanced Materials, 2017, 29, 1602914.	11.1	523
23	Metal–Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity. Journal of the American Chemical Society, 2013, 135, 10664-10672.	6.6	520
24	General Synthesis and Gasâ€5ensing Properties of Multipleâ€5hell Metal Oxide Hollow Microspheres. Angewandte Chemie - International Edition, 2011, 50, 2738-2741.	7.2	517
25	Oneâ€Pot Synthesis and Hierarchical Assembly of Hollow Cu ₂ O Microspheres with Nanocrystals omposed Porous Multishell and Their Gasâ€5ensing Properties. Advanced Functional Materials, 2007, 17, 2766-2771.	7.8	505
26	Doubleâ€Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3982-3986.	7.2	505
27	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
28	Accurate Control of Multishelled ZnO Hollow Microspheres for Dye‣ensitized Solar Cells with High Efficiency. Advanced Materials, 2012, 24, 1046-1049.	11.1	482
29	Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angewandte Chemie - International Edition, 2007, 46, 1489-1492.	7.2	469
30	Dualâ€Confined Flexible Sulfur Cathodes Encapsulated in Nitrogenâ€Doped Doubleâ€Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1402263.	10.2	459
31	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701415.	10.2	436
32	Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. Journal of the American Chemical Society, 2018, 140, 13644-13653.	6.6	430
33	Preparation of SnO ₂ /Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials, 2008, 20, 6562-6566.	3.2	410
34	Multishelled TiO ₂ Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. Nano Letters, 2014, 14, 6679-6684.	4.5	406
35	MS ₂ (M = Co and Ni) Hollow Spheres with Tunable Interiors for Highâ€Performance Supercapacitors and Photovoltaics. Advanced Functional Materials, 2014, 24, 2155-2162.	7.8	398
36	Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Accounts of Chemical Research, 2017, 50, 293-301.	7.6	397

#	Article	IF	CITATIONS
37	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.	4.5	386
38	Oneâ€Pot Facile Synthesis of Doubleâ€Shelled SnO ₂ Yolkâ€Shellâ€Structured Powders by Continuous Process as Anode Materials for Liâ€ion Batteries. Advanced Materials, 2013, 25, 2279-2283.	11.1	378
39	Metal–Organic Framework Hybridâ€Assisted Formation of Co ₃ O ₄ /Coâ€Fe Oxide Doubleâ€Shelled Nanoboxes for Enhanced Oxygen Evolution. Advanced Materials, 2018, 30, e1801211.	11.1	374
40	Formation of Double‣helled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. Angewandte Chemie - International Edition, 2017, 56, 7141-7145.	7.2	371
41	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	11.1	370
42	Thylakoid-Inspired Multishell g-C ₃ N ₄ Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis. ACS Nano, 2017, 11, 1103-1112.	7.3	368
43	Metal organic frameworks-derived Co ₃ O ₄ hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. Journal of Materials Chemistry A, 2014, 2, 12194-12200.	5.2	353
44	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	352
45	Coordination Polymers Derived General Synthesis of Multishelled Mixed Metalâ€Oxide Particles for Hybrid Supercapacitors. Advanced Materials, 2017, 29, 1605902.	11.1	345
46	SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9912.	6.7	327
47	Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal–Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. ACS Nano, 2015, 9, 11462-11471.	7.3	324
48	Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 2009, 19, 6073.	6.7	314
49	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
50	The Design and Synthesis of Hollow Microâ€∤Nanostructures: Present and Future Trends. Advanced Materials, 2018, 30, e1800939.	11.1	301
51	Hollow Multi-Shelled Structures of Co ₃ O ₄ Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 2238-2241.	6.6	287
52	Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls: Cavity Size Tuning and Functionalization. Small, 2007, 3, 261-265.	5.2	286
53	Quintupleâ€5helled SnO ₂ Hollow Microspheres with Superior Light Scattering for Highâ€Performance Dyeâ€5ensitized Solar Cells. Advanced Materials, 2014, 26, 905-909.	11.1	283
54	General Formation of MS (M = Ni, Cu, Mn) Boxâ€inâ€Box Hollow Structures with Enhanced Pseudocapacitive Properties. Advanced Functional Materials, 2014, 24, 7440-7446.	7.8	281

#	Article	IF	CITATIONS
55	Multiâ€ s helled Hollow Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 5512-5516.	7.2	280
56	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	6.6	278
57	Templateâ€Free Synthesis of VO ₂ Hollow Microspheres with Various Interiors and Their Conversion into V ₂ O ₅ for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 2226-2230.	7.2	275
58	Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. Journal of the American Chemical Society, 2017, 139, 13492-13498.	6.6	264
59	Multi-shelled CeO ₂ hollow microspheres as superior photocatalysts for water oxidation. Nanoscale, 2014, 6, 4072-4077.	2.8	262
60	Construction of Complex Co ₃ O ₄ @Co ₃ V ₂ O ₈ Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Advanced Materials, 2018, 30, 1702875.	11.1	262
61	General Synthesis of Multishell Mixedâ€Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 2386-2389.	7.2	257
62	Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2019, 252, 33-40.	10.8	255
63	Rational design of yolk–shell nanostructures for photocatalysis. Chemical Society Reviews, 2019, 48, 1874-1907.	18.7	254
64	Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Applied Catalysis B: Environmental, 2016, 188, 324-341.	10.8	249
65	Formation of Fe ₃ O ₄ @MnO ₂ ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. Journal of Materials Chemistry A, 2016, 4, 1414-1422.	5.2	248
66	Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. Journal of the American Chemical Society, 2010, 132, 16271-16277.	6.6	241
67	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	11.1	239
68	A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. Journal of the American Chemical Society, 2015, 137, 7935-7944.	6.6	238
69	Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246, 24-31.	4.0	232
70	<i>In Situ</i> Self-Template Synthesis of Fe–N-Doped Double-Shelled Hollow Carbon Microspheres for Oxygen Reduction Reaction. ACS Nano, 2018, 12, 208-216.	7.3	231
71	ZnO Hollow Spheres with Double‥olk Egg Structure for Highâ€Performance Photocatalysts and Photodetectors. Advanced Materials, 2012, 24, 3421-3425.	11.1	223
72	General Synthesis of Multi‧helled Mixed Metal Oxide Hollow Spheres with Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2014, 53, 9041-9044.	7.2	222

#	Article	IF	CITATIONS
73	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
74	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 2018, 11, 205-259.	9.5	221
75	General Synthesis of Homogeneous Hollow Coreâ^'Shell Ferrite Microspheres. Journal of Physical Chemistry C, 2009, 113, 2792-2797.	1.5	220
76	Doubleâ€Walled SnO ₂ Nanoâ€Cocoons with Movable Magnetic Cores. Advanced Materials, 2007, 19, 3328-3332.	11.1	219
77	Metal–organic framework-derived CoSe ₂ /(NiCo)Se ₂ box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 18823-18830.	5.2	213
78	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426.	7.2	212
79	Hollow Metal–Organicâ€Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials. Advanced Materials, 2019, 31, e1803291.	11.1	210
80	A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20, 4595.	6.7	208
81	Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. CheM, 2018, 4, 162-173.	5.8	202
82	Soft Template Synthesis of Yolk/Silica Shell particles. Advanced Materials, 2010, 22, 1516-1520.	11.1	200
83	Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. Journal of Power Sources, 2017, 342, 529-536.	4.0	200
84	Multilayered Nanocrystalline SnO ₂ Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. Journal of Physical Chemistry C, 2007, 111, 14067-14071.	1.5	195
85	Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy, 2019, 59, 184-196.	8.2	194
86	Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chemical Communications, 2013, 49, 8695.	2.2	192
87	Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordination Chemistry Reviews, 2019, 388, 172-201.	9.5	192
88	Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 414-430.	3.2	189
89	Formation of Tripleâ€Shelled Molybdenum–Polydopamine Hollow Spheres and Their Conversion into MoO ₂ /Carbon Composite Hollow Spheres for Lithiumâ€ŀon Batteries. Angewandte Chemie - International Edition, 2016, 55, 14668-14672.	7.2	185
90	Synthesis of CuS@CoS ₂ Doubleâ€6helled Nanoboxes with Enhanced Sodium Storage Properties. Angewandte Chemie - International Edition, 2019, 58, 7739-7743.	7.2	184

#	Article	IF	CITATIONS
91	Serial Ionic Exchange for the Synthesis of Multishelled Copper Sulfide Hollow Spheres. Angewandte Chemie - International Edition, 2012, 51, 949-952.	7.2	182
92	Synthesis of Cobalt Sulfide Multiâ€shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 2675-2679.	7.2	182
93	A Templated Method to Bi ₂ WO ₆ Hollow Microspheres and Their Conversion to Double-Shell Bi ₂ O ₃ /Bi ₂ WO ₆ Hollow Microspheres with Improved Photocatalytic Performance. Inorganic Chemistry, 2012, 51, 6245-6250.	1.9	178
94	Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Materials, 2015, 7, e165-e165.	3.8	177
95	Metal oxide hollow nanostructures: Fabrication and Li storage performance. Journal of Power Sources, 2013, 238, 376-387.	4.0	174
96	MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Transactions, 2016, 45, 13311-13316.	1.6	172
97	Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochimica Acta, 2015, 155, 174-182.	2.6	166
98	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. Journal of Power Sources, 2018, 402, 281-295.	4.0	160
99	Hollow Multishelled Structures for Promising Applications: Understanding the Structure–Performance Correlation. Accounts of Chemical Research, 2019, 52, 2169-2178.	7.6	160
100	Cobalt(ii,iii) oxide hollow structures: fabrication, properties and applications. Journal of Materials Chemistry, 2012, 22, 23310.	6.7	156
101	Selfâ€Templating Approaches to Hollow Nanostructures. Advanced Materials, 2019, 31, e1802349.	11.1	156
102	Templateâ€Assisted Formation of Rattleâ€ŧype V ₂ O ₅ Hollow Microspheres with Enhanced Lithium Storage Properties. Advanced Functional Materials, 2013, 23, 5669-5674.	7.8	154
103	pHâ€Regulated Synthesis of Multiâ€Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	5.6	154
104	Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures. Advanced Materials, 2019, 31, e1802874.	11.1	153
105	MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors. Journal of Alloys and Compounds, 2018, 734, 1-8.	2.8	152
106	Hollow Multiâ€5helled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 9078-9082.	7.2	149
107	Multi Ballâ€Inâ€Ball Hybrid Metal Oxides. Advanced Materials, 2011, 23, 1720-1723.	11.1	146
108	Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 7479-7487.	7.8	145

#	Article	IF	CITATIONS
109	Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 18609-18617.	4.0	144
110	The Application of Hollow Structured Anodes for Sodiumâ€ion Batteries: From Simple to Complex Systems. Advanced Materials, 2019, 31, e1800492.	11.1	143
111	Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS Nano, 2019, 13, 7800-7810.	7.3	143
112	Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 15475.	6.7	141
113	Designing an asymmetric device based on graphene wrapped yolk–double shell NiGa ₂ S ₄ hollow microspheres and graphene wrapped FeS ₂ –FeSe ₂ core–shell cratered spheres with outstanding energy density. Iournal of Materials Chemistry A. 2019. 7, 10282-10292.	5.2	141
114	Synthesis and self-assembly of complex hollow materials. Journal of Materials Chemistry, 2011, 21, 7511.	6.7	138
115	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy, 2019, 60, 591-599.	8.2	136
116	Hollow carbon spheres with a controllable shell structure. Journal of Materials Chemistry, 2006, 16, 4413.	6.7	135
117	Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials, 2011, 32, 556-564.	5.7	135
118	Yolk–Shell, Hollow, and Single rystalline ZnCo ₂ O ₄ Powders: Preparation Using a Simple Oneâ€Pot Process and Application in Lithiumâ€ion Batteries. ChemSusChem, 2013, 6, 2111-2116	. 3.6	133
119	Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 2013, 3, 1391.	1.6	131
120	Formation of NiCo ₂ V ₂ O ₈ Yolk–Double Shell Spheres with Enhanced Lithium Storage Properties. Angewandte Chemie - International Edition, 2018, 57, 2899-2903.	7.2	131
121	MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8680-8689.	5.2	130
122	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	5.2	129
123	Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery. Journal of Materials Chemistry, 2011, 21, 5290.	6.7	128
124	Design and Preparation of MnO ₂ /CeO ₂ –MnO ₂ Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 8670-8677.	4.0	128
125	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie - International Edition, 2017, 56, 8446-8450.	7.2	128
126	Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes. Joule, 2018, 2, 2348-2363.	11.7	128

#	Article	IF	CITATIONS
127	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie - International Edition, 2020, 59, 721-724.	7.2	128
128	Synthesis for Yolkâ€shellâ€structured Metal Sulfide Powders with Excellent Electrochemical Performances for Lithiumâ€ion Batteries. Small, 2014, 10, 474-478.	5.2	127
129	Engineering of multi-shelled SnO ₂ hollow microspheres for highly stable lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17673-17677.	5.2	127
130	Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance. Electrochimica Acta, 2018, 281, 109-116.	2.6	124
131	Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Applied Surface Science, 2019, 464, 472-478.	3.1	123
132	Formation of Septuple‧helled (Co _{2/3} Mn _{1/3})(Co _{5/6} Mn _{1/6}) ₂ O ₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. Advanced Materials, 2017, 29, 1700550.	11.1	122
133	Synthesis of Spheres with Complex Structures Using Hollow Latex Cages as Templates. Advanced Functional Materials, 2005, 15, 1523-1528.	7.8	121
134	Structural Engineering of Multishelled Hollow Carbon Nanostructures for Highâ€Performance Naâ€lon Battery Anode. Advanced Energy Materials, 2018, 8, 1800855.	10.2	121
135	Double-Walled Au Nanocage/SiO ₂ Nanorattles: Integrating SERS Imaging, Drug Delivery and Photothermal Therapy. Small, 2015, 11, 985-993.	5.2	120
136	Multishelled Ni <i> _x </i> Co ₃₋ <i> _x </i> O ₄ Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries. Small, 2017, 13, 1604270.	5.2	120
137	Hollow Si/SiO _x nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. Journal of Materials Chemistry A, 2018, 6, 8039-8046.	5.2	120
138	Multiâ€6hell Porous TiO ₂ Hollow Nanoparticles for Enhanced Light Harvesting in Dyeâ€sensitized Solar Cells. Advanced Functional Materials, 2014, 24, 7619-7626.	7.8	119
139	Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO ₂ and Hollow SnO/SnO ₂ and SnO ₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties. Small, 2015, 11, 4673-4681.	5.2	119
140	Multishelled Metal Oxide Hollow Spheres: Easy Synthesis and Formation Mechanism. Chemistry - A European Journal, 2016, 22, 8864-8871.	1.7	119
141	Engineering onion-like nanoporous CuCo ₂ O ₄ hollow spheres derived from bimetal–organic frameworks for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10497-10506.	5.2	119
142	An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites. Advanced Materials, 2010, 22, 833-837.	11.1	117
143	One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Research, 2016, 9, 2026-2033.	5.8	117
144	Hollow Multishelled Heterostructured Anatase/TiO ₂ (B) with Superior Rate Capability and Cycling Performance. Advanced Materials, 2019, 31, e1805754.	11.1	117

#	Article	IF	CITATIONS
145	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	5.2	116
146	A multi-shelled CoP nanosphere modified separator for highly efficient Li–S batteries. Nanoscale, 2018, 10, 13694-13701.	2.8	116
147	Template-Free Synthesis of Amorphous Double-Shelled Zinc–Cobalt Citrate Hollow Microspheres and Their Transformation to Crystalline ZnCo ₂ O ₄ Microspheres. ACS Applied Materials & Interfaces, 2013, 5, 5508-5517.	4.0	114
148	Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Research, 2015, 8, 2663-2675.	5.8	114
149	Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochimica Acta, 2017, 237, 94-101.	2.6	114
150	Multi-shelled titania hollow spheres fabricated by a hard template strategy: enhanced photocatalytic activity. Chemical Communications, 2010, 46, 4312.	2.2	110
151	Hollow ZnSnO ₃ Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors. ACS Applied Materials & Interfaces, 2017, 9, 14525-14533.	4.0	110
152	Self-templated synthesis of uniform nanoporous CuCo ₂ O ₄ double-shelled hollow microspheres for high-performance asymmetric supercapacitors. Chemical Communications, 2017, 53, 1052-1055.	2.2	109
153	Hierarchical nanoscale multi-shell Au/CeO ₂ hollow spheres. Chemical Science, 2014, 5, 4221-4226.	3.7	106
154	Encapsulating Pd Nanoparticles in Double-Shelled Graphene@Carbon Hollow Spheres for Excellent Chemical Catalytic Property. Scientific Reports, 2014, 4, 4053.	1.6	106
155	Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. Journal of Materials Chemistry A, 2017, 5, 14996-15001.	5.2	106
156	NiCo 2 O 4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chemical Engineering Journal, 2017, 309, 426-434.	6.6	106
157	Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Applied Surface Science, 2018, 430, 549-560.	3.1	106
158	Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nature Communications, 2019, 10, 2270.	5.8	105
159	Synergetic Effect of Yolk–Shell Structure and Uniform Mixing of SnS–MoS ₂ Nanocrystals for Improved Na-Ion Storage Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 24694-24702.	4.0	104
160	Double-shell CuS nanocages as advanced supercapacitor electrode materials. Journal of Power Sources, 2017, 355, 31-35.	4.0	104
161	Tripleâ€ 5 helled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, 996-1001.	7.2	104
162	Designing oxygen bonding between reduced graphene oxide and multishelled Mn ₃ O ₄ hollow spheres for enhanced performance of supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6686-6694.	5.2	103

#	Article	IF	CITATIONS
163	Polypyrroleâ€Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithiumâ€Ion Batteries. Small, 2016, 12, 3732-3737.	5.2	102
164	Hollow Multi‣helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	7.2	102
165	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. Journal of Power Sources, 2014, 272, 107-112.	4.0	101
166	Zinc oxide core–shell hollow microspheres with multi-shelled architecture for gas sensor applications. Journal of Materials Chemistry, 2011, 21, 19331.	6.7	100
167	Alternating Silica/Polymer Multilayer Hybrid Microspheres Templates for Double-shelled Polymer and Inorganic Hollow Microstructures. Chemistry of Materials, 2010, 22, 1309-1317.	3.2	99
168	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	3.2	99
169	Triple-shelled Mn ₂ O ₃ hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14189.	5.2	97
170	Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 9475.	6.7	96
171	Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon, 2016, 99, 514-522.	5.4	96
172	Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sensors and Actuators B: Chemical, 2018, 256, 374-382.	4.0	96
173	Construction of Multishelled Binary Metal Oxides via Coabsorption of Positive and Negative Ions as a Superior Cathode for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 17114-17119.	6.6	96
174	Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Research, 2017, 10, 3920-3928.	5.8	94
175	Oneâ€Pot Synthesis of Pd‣oaded SnO ₂ Yolk–Shell Nanostructures for Ultraselective Methyl Benzene Sensors. Chemistry - A European Journal, 2014, 20, 2737-2741.	1.7	93
176	Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 224, 230-238.	10.8	93
177	Shape Evolution of New-Phased Lepidocrocite VOOH from Single-Shelled to Double-Shelled Hollow Nanospheres on the Basis of Programmed Reaction-Temperature Strategy. Inorganic Chemistry, 2009, 48, 6044-6054.	1.9	92
178	Synthesis of the double-shell anatase–rutile TiO2 hollow spheres with enhanced photocatalytic activity. Nanoscale, 2013, 5, 12150.	2.8	92
179	Hierachically Structured Hollow Silica Spheres for High Efficiency Immobilization of Enzymes. Advanced Functional Materials, 2013, 23, 2162-2167.	7.8	92
180	Subunits controlled synthesis of α-Fe ₂ O ₃ multi-shelled core–shell microspheres and their effects on lithium/sodium ion battery performances. Journal of Materials Chemistry A, 2015, 3, 10092-10099.	5.2	92

#	Article	IF	CITATIONS
181	Antipulverization Electrode Based on Lowâ€Carbon Tripleâ€Shelled Superstructures for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701494.	11.1	92
182	A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk–Shell Structured Nanomaterials. Nano-Micro Letters, 2018, 10, 40.	14.4	92
183	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	5.2	91
184	Using a Multiâ€Shelled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€toâ€Host and Guestâ€toâ€Guest Interactions. Angewandte Chemie - International Edition, 2018, 57, 2110-2114.	7.2	91
185	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	5.2	90
186	A self-templating method for metal–organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8602-8608.	5.2	90
187	Enhanced Electroresponsive Performance of Double-Shell SiO ₂ /TiO ₂ Hollow Nanoparticles. ACS Nano, 2015, 9, 4939-4949.	7.3	89
188	Evolution of form in metal–organic frameworks. Nature Communications, 2017, 8, 14070.	5.8	89
189	Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. ACS Nano, 2017, 11, 11521-11530.	7.3	88
190	High-Performance Energy Storage Device Based on Triple-Shelled Cobalt Gallium Oxide Hollow Spheres and Graphene Wrapped Copper Iron Disulfide Porous Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 7908-7917.	3.2	88
191	Metallic Double Shell Hollow Nanocages: The Challenges of Their Synthetic Techniques. Langmuir, 2012, 28, 4051-4059.	1.6	87
192	Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature. Sensors and Actuators B: Chemical, 2018, 273, 751-759.	4.0	87
193	Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chemical Engineering Journal, 2019, 368, 951-958.	6.6	87
194	Hollow Multishelled Structure of Heterogeneous Co ₃ O ₄ –CeO _{2â^"} <i>_x</i> Nanocomposite for CO Catalytic Oxidation. Advanced Functional Materials, 2019, 29, 1806588.	7.8	86
195	Facile synthesis and application of multi-shelled SnO ₂ hollow spheres in lithium ion battery. RSC Advances, 2016, 6, 58069-58076.	1.7	85
196	Multi-shelled LiMn ₂ O ₄ hollow microspheres as superior cathode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 365-369.	3.0	84
197	Self-templated formation of ZnFe ₂ O ₄ double-shelled hollow microspheres for photocatalytic degradation of gaseous o-dichlorobenzene. Journal of Materials Chemistry A, 2017, 5, 8909-8915.	5.2	84
198	Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Materials, 2019, 23, 17-24.	9.5	83

#	Article	IF	CITATIONS
199	Cobalt oxide hollow nanoparticles derived by bio-templating. Chemical Communications, 2005, , 4101.	2.2	82
200	Multishelled Nickel–Cobalt Oxide Hollow Microspheres with Optimized Compositions and Shell Porosity for High-Performance Pseudocapacitors. ACS Applied Materials & Interfaces, 2016, 8, 17276-17283.	4.0	82
201	Scalable fabrication of ZnxCd1-xS double-shell hollow nanospheres for highly efficient hydrogen production. Applied Catalysis B: Environmental, 2018, 239, 309-316.	10.8	82
202	Synthetic Architecture of Multiple Core–Shell and Yolk–Shell Structures of (Cu ₂ O@) _{<i>n</i>} Cu ₂ O (<i>n</i> = 1–4) with Centricity and Eccentricity. Chemistry of Materials, 2012, 24, 1917-1929.	3.2	81
203	Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochimica Acta, 2019, 312, 54-61.	2.6	81
204	Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Research, 2014, 7, 1116-1127.	5.8	80
205	Highly sensitive and selective detection of ppb-level NO 2 using multi-shelled WO 3 yolk–shell spheres. Sensors and Actuators B: Chemical, 2016, 229, 561-569.	4.0	80
206	Synthesis of Zn2SnO4 hollow spheres by a template route for high-performance acetone gas sensor. Sensors and Actuators B: Chemical, 2017, 245, 493-506.	4.0	80
207	Nickel Cobalt Sulfide Double-Shelled Hollow Nanospheres as Superior Bifunctional Electrocatalysts for Photovoltaics and Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 9379-9389.	4.0	80
208	MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. Journal of Colloid and Interface Science, 2019, 556, 83-91.	5.0	80
209	A facile sequential ion exchange strategy to synthesize CoSe ₂ /FeSe ₂ double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale, 2019, 11, 10738-10745.	2.8	80
210	Synthesis of Multiple‣hell WO ₃ Hollow Spheres by a Binary Carbonaceous Template Route and Their Applications in Visible‣ight Photocatalysis. Chemistry - A European Journal, 2012, 18, 13949-13953.	1.7	79
211	Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures. Journal of Materials Chemistry A, 2016, 4, 183-192.	5.2	77
212	Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor. Applied Surface Science, 2018, 443, 114-121.	3.1	77
213	Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Materials Research Bulletin, 2017, 87, 224-229.	2.7	76
214	Effect of Cation Substitution on the Gas-Sensing Performances of Ternary Spinel MCo ₂ O ₄ (M = Mn, Ni, and Zn) Multishelled Hollow Twin Spheres. ACS Applied Materials & Interfaces, 2019, 11, 28023-28032.	4.0	76
215	Hierarchical multi-shelled nanoporous mixed copper cobalt phosphide hollow microspheres as a novel advanced electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18429-18433.	5.2	75
216	Interior Structural Tailoring of Cu ₂ O Shell-in-Shell Nanostructures through Multistep Ostwald Ripening. Journal of Physical Chemistry C, 2011, 115, 18479-18485.	1.5	74

#	Article	IF	CITATIONS
217	Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium-ion batteries. Chemical Engineering Journal, 2017, 323, 252-259.	6.6	74
218	Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere. Materials Characterization, 2014, 97, 18-26.	1.9	73
219	Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2019, 355, 986-998.	6.6	73
220	Molecular Structure of a 9-MDa Icosahedral Pyruvate Dehydrogenase Subcomplex Containing the E2 and E3 Enzymes Using Cryoelectron Microscopy. Journal of Biological Chemistry, 2006, 281, 4364-4370.	1.6	72
221	Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chemical Engineering Journal, 2017, 323, 415-424.	6.6	72
222	C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications. Journal of Hazardous Materials, 2017, 331, 235-245.	6.5	71
223	One-pot fabrication of yolk–shell structured La _{0.9} Sr _{0.1} CoO ₃ perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2015, 3, 22448-22453.	5.2	70
224	Facile one-pot synthesis of NiCo2O4 hollow spheres with controllable number of shells for high-performance supercapacitors. Nano Research, 2017, 10, 405-414.	5.8	70
225	Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage. Applied Surface Science, 2018, 435, 993-1001.	3.1	69
226	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86, 235-244.	5.4	68
227	Ni-Co-MoS ball-in-ball hollow nanospheres as Pt-free bifunctional catalysts for high-performance solar cells and hydrogen evolution reactions. Chemical Engineering Journal, 2019, 368, 202-211.	6.6	67
228	Novel Au/Cu ₂ 0 multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 14415-14421.	5.2	66
229	Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries. Inorganic Chemistry Frontiers, 2018, 5, 535-540.	3.0	66
230	NiCo2S4 multi-shelled hollow polyhedrons as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2019, 299, 289-297.	2.6	66
231	Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution: Synthesis, magnetic properties and their application in water treatment. Journal of Materials Chemistry, 2011, 21, 17680.	6.7	65
232	One-pot synthesis of Fe2O3 yolk–shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale, 2013, 5, 11592.	2.8	65
233	One-pot solvothermal synthesis of multi-shelled α-Fe2O3 hollow spheres with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2013, 551, 440-443.	2.8	64
234	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Interfaces, 2018, 10, 15314-15321.	4.0	64

#	Article	IF	CITATIONS
235	Preparation of Magnetic Hybrid Copolymer–Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening. Chemistry of Materials, 2007, 19, 6485-6491.	3.2	63
236	Selfâ€Assembled Doubleâ€Shelled Ferrihydrite Hollow Spheres with a Tunable Aperture. Chemistry - A European Journal, 2008, 14, 5346-5352.	1.7	63
237	Preparation of multi-shelled conductive polymer hollow microspheres by using Fe ₃ O ₄ hollow spheres as sacrificial templates. Chemical Communications, 2014, 50, 12493-12496.	2.2	63
238	Yolk Bishell Mn _{<i>x</i>} Co _{1–<i>x</i>} Fe ₂ O ₄ Hollow Microspheres and Their Embedded Form in Carbon for Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 6300-6309.	4.0	63
239	Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application. Nanoscale, 2013, 5, 9747.	2.8	62
240	Control of Amphiphile Self-Assembly via Bioinspired Metal Ion Coordination. Journal of the American Chemical Society, 2018, 140, 1409-1414.	6.6	62
241	Fully integrated hierarchical double-shelled Co ₉ S ₈ @CNT nanostructures with unprecedented performance for Li–S batteries. Nanoscale Horizons, 2019, 4, 182-189.	4.1	62
242	Multi-shelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances. Journal of Alloys and Compounds, 2016, 685, 8-14.	2.8	61
243	Hollow shell-in-shell Ni ₃ S ₄ @Co ₉ S ₈ tubes derived from core–shell Ni-MOF-74@Co-MOF-74 as efficient faradaic electrodes. CrystEngComm, 2018, 20, 889-895.	1.3	61
244	Facile Synthesis of Nitrogen-Doped Double-Shelled Hollow Mesoporous Carbon Nanospheres as High-Performance Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5999-6007.	3.2	61
245	Unique structured microspheres with multishells comprising graphitic carbon-coated Fe ₃ O ₄ hollow nanopowders as anode materials for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15766-15773.	5.2	61
246	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. Small, 2017, 13, 1700798.	5.2	60
247	A Synthetic Protocol for Preparation of Binary Multi-shelled Hollow Spheres and Their Enhanced Oxidation Application. Chemistry of Materials, 2017, 29, 10104-10112.	3.2	60
248	Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors. Ceramics International, 2018, 44, 17464-17472.	2.3	60
249	Synthesis of double-shelled SnO ₂ nano-polyhedra and their improved gas sensing properties. Nanoscale, 2015, 7, 3276-3284.	2.8	59
250	Design of multishell microsphere of transition metal oxides/carbon composites for lithium ion battery. Chemical Engineering Journal, 2020, 380, 122489.	6.6	59
251	Fabrication of cubic Zn ₂ SnO ₄ /SnO ₂ complex hollow structures and their sunlight-driven photocatalytic activity. Nanoscale, 2016, 8, 12858-12862.	2.8	58
252	Kilogram-Scale Synthesis of Pd-Loaded Quintuple-Shelled Co ₃ O ₄ Microreactors and Their Application to Ultrasensitive and Ultraselective Detection of Methylbenzenes. ACS Applied Materials & Interfaces, 2015, 7, 7717-7723.	4.0	56

#	Article	IF	CITATIONS
253	Hierarchical TiO ₂ /SnO ₂ Hollow Spheres Coated with Graphitized Carbon for High-Performance Electrochemical Li-Ion Storage. Small, 2017, 13, 1604283.	5.2	56
254	Multi-shelled MgCo ₂ O ₄ hollow microspheres as anodes for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 12263-12272.	5.2	55
255	Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochimica Acta, 2019, 312, 242-250.	2.6	55
256	Electrochemical properties of yolk–shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries. RSC Advances, 2013, 3, 13110.	1.7	54
257	Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sensors and Actuators B: Chemical, 2013, 183, 467-473.	4.0	53
258	Alkaline electrochemical water oxidation with multi-shelled cobalt manganese oxide hollow spheres. Chemical Communications, 2017, 53, 8641-8644.	2.2	53
259	Metal Nanoparticles Confined in the Nanospace of Double-Shelled Hollow Silica Spheres for Highly Efficient and Selective Catalysis. Chemistry of Materials, 2016, 28, 5596-5600.	3.2	52
260	Modulation synthesis of multi-shelled cobalt-iron oxides as efficient catalysts for peroxymonosulfate-mediated organics degradation. Chemical Engineering Journal, 2019, 359, 1537-1549.	6.6	52
261	Synthesis of Singleâ€Component Metal Oxides with Controllable Multiâ€5helled Structure and their Morphologyâ€Related Applications. Chemical Record, 2020, 20, 102-119.	2.9	52
262	Composite Yttriumâ€Carbonaceous Spheres Templated Multiâ€Shell YVO ₄ Hollow Spheres with Superior Upconversion Photoluminescence. Advanced Materials, 2017, 29, 1604377.	11.1	51
263	A Hollowâ€Shell Structured V ₂ O ₅ Electrodeâ€Based Symmetric Full Liâ€Ion Battery with Highest Capacity. Advanced Energy Materials, 2019, 9, 1900909.	10.2	51
264	Degradation of rhodamine B by a novel Fe3O4/SiO2 double-mesoporous-shelled hollow spheres through photo-Fenton process. Materials Chemistry and Physics, 2019, 227, 302-312.	2.0	51
265	Using Simple Spray Pyrolysis to Prepare Yolk–Shellâ€6tructured ZnO–Mn ₃ O ₄ Systems with the Optimum Composition for Superior Electrochemical Properties. Chemistry - A European Journal, 2014, 20, 3014-3018.	1.7	50
266	Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. Chinese Journal of Catalysis, 2017, 38, 970-990.	6.9	50
267	Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Materials Chemistry and Physics, 2004, 88, 235-238.	2.0	49
268	Multilayer Zn-doped SnO 2 hollow nanospheres encapsulated in covalently interconnected three-dimensional graphene foams for high performance lithium-ion batteries. Chemical Engineering Journal, 2017, 320, 405-415.	6.6	49
269	Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye. Journal of Physics and Chemistry of Solids, 2018, 112, 209-215.	1.9	49
270	Forming bubble-encapsulated double-shelled hollow spheres towards fast kinetics and superior high rate performance for aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10589-10600.	5.2	49

#	Article	IF	CITATIONS
271	Heterostructured bismuth vanadate multi-shell hollow spheres with high visible-light-driven photocatalytic activity. Materials Research Bulletin, 2017, 86, 44-50.	2.7	48
272	Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor. Journal of Materials Chemistry, 2011, 21, 14277.	6.7	47
273	Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Research, 2014, 7, 1738-1748.	5.8	47
274	Double-shelled support and confined void strategy to improve the lithium storage properties of SnO2/C anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18036-18044.	5.2	47
275	Fabrication of multi-shelled hollow Mg-modified CaCO 3 microspheres and their improved CO 2 adsorption performance. Chemical Engineering Journal, 2017, 321, 401-411.	6.6	47
276	Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Applied Surface Science, 2018, 435, 468-475.	3.1	47
277	Multi-shelled ZnO decorated with nitrogen and phosphorus co-doped carbon quantum dots: synthesis and enhanced photodegradation activity of methylene blue in aqueous solutions. RSC Advances, 2019, 9, 7362-7374.	1.7	47
278	Multishelled Transition Metalâ€Based Microspheres: Synthesis and Applications for Batteries and Supercapacitors. Small, 2019, 15, e1804737.	5.2	47
279	Yolk–shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 988-995.	5.2	46
280	MOF-derived formation of nickel cobalt sulfides with multi-shell hollow structure towards electrocatalytic hydrogen evolution reaction in alkaline media. Composites Part B: Engineering, 2019, 177, 107252.	5.9	46
281	Phenolic Resin and Derived Carbon Hollow Spheres. Macromolecular Chemistry and Physics, 2006, 207, 1633-1639.	1.1	45
282	A multi-shelled V ₂ O ₃ /C composite with an overall coupled carbon scaffold enabling ultrafast and stable lithium/sodium storage. Journal of Materials Chemistry A, 2019, 7, 19234-19240.	5.2	45
283	Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries. Nano-Micro Letters, 2018, 10, 13.	14.4	44
284	Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 1232-1237.	1.1	44
285	Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil. Sensors and Actuators B: Chemical, 2016, 235, 707-716.	4.0	43
286	Resonanceâ€Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed. Advanced Materials, 2018, 30, e1801972.	11.1	43
287	Double -shelled hollow ZnO/carbon nanocubes as an efficient solid-phase microextraction coating for the extraction of broad-spectrum pollutants. Nanoscale, 2019, 11, 2805-2811.	2.8	43
288	Shell-in-shell monodispersed triamine-functionalized SiO2 hollow microspheres with micro-mesostructured shells for highly efficient removal of heavy metals from aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7, 102832.	3.3	43

#	Article	IF	CITATIONS
289	Double‧helled Mn ₂ O ₃ Hollow Spheres and Their Application in Water Treatment. European Journal of Inorganic Chemistry, 2010, 2010, 1172-1176.	1.0	42
290	One-pot controllable synthesis of CoFe ₂ O ₄ solid, hollow and multi-shell hollow nanospheres as superior anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 21994-22003.	5.2	42
291	Triple-, Double-, and Single-Shelled Hollow Spheres of Sulfonated Microporous Organic Network as Drug Delivery Materials. Chemistry of Materials, 2019, 31, 300-304.	3.2	42
292	A systematic study on the synthesis of α-Fe ₂ O ₃ multi-shelled hollow spheres. RSC Advances, 2015, 5, 10304-10309.	1.7	41
293	Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors. Carbon, 2016, 107, 100-108.	5.4	40
294	Metal-organic frameworks-derived porous ZnO/Ni0.9Zn0.1O double-shelled nanocages as gas sensing material for selective detection of xylene. Sensors and Actuators B: Chemical, 2017, 252, 649-656.	4.0	40
295	ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation. Applied Surface Science, 2018, 437, 161-168.	3.1	40
296	Rapid sensitive sensing platform based on yolk-shell hybrid hollow sphere for detection of ethanol. Sensors and Actuators B: Chemical, 2018, 256, 479-487.	4.0	40
297	Highly Porous Double-Shelled Hollow Hematite Nanoparticles for Gas Sensing. ACS Applied Nano Materials, 2019, 2, 2347-2357.	2.4	40
298	Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells. RSC Advances, 2011, 1, 1301.	1.7	39
299	Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries. Electrochimica Acta, 2014, 132, 323-331.	2.6	39
300	Dual-templating synthesis of multi-shelled mesoporous silica nanoparticles as catalyst and drug carrier. Microporous and Mesoporous Materials, 2016, 228, 318-328.	2.2	39
301	Tunable Co ₃ O ₄ hollow structures (from yolk–shell to multi-shell) and their Li storage properties. Journal of Materials Chemistry A, 2017, 5, 12757-12761.	5.2	39
302	Carbon nanotube-stabilized Co ₉ S ₈ dual-shell hollow spheres for high-performance K-ion storage. Chemical Communications, 2019, 55, 1406-1409.	2.2	39
303	Porous hollow carbon nanobubbles@ZnCdS multi-shelled dodecahedral cages with enhanced visible-light harvesting for ultrasensitive photoelectrochemical biosensors. Biosensors and Bioelectronics, 2019, 133, 125-132.	5.3	39
304	Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. Journal of Materials Chemistry, 2012, 22, 17079.	6.7	38
305	<i>Morella-rubra</i> -like metal–organic-framework-derived multilayered Co ₃ O ₄ /NiO/C hybrids as high-performance anodes for lithium storage. Journal of Materials Chemistry A, 2017, 5, 24269-24274.	5.2	38
306	Unique double-shelled hollow silica microspheres: template-guided self-assembly, tunable pore size, high thermal stability, and their application in removal of neutral red. Journal of Materials Chemistry, 2011, 21, 19124.	6.7	37

#	Article	IF	CITATIONS
307	Au Nanodisk-Core Multishell Nanoparticles: Synthetic Method for Controlling Number of Shells and Intershell Distance. Chemistry of Materials, 2014, 26, 3618-3623.	3.2	37
308	Facile synthesis of Co 3 O 4 spheres and their unexpected high specific discharge capacity for Lithium-ion batteries. Applied Surface Science, 2017, 416, 338-343.	3.1	37
309	Enhanced gas sensing by amorphous double-shell Fe2O3 hollow nanospheres functionalized with PdO nanoparticles. Sensors and Actuators B: Chemical, 2017, 252, 322-329.	4.0	37
310	Heterogeneous Double-Shelled Constructed Fe ₃ O ₄ Yolk–Shell Magnetite Nanoboxes with Superior Lithium Storage Performances. ACS Applied Materials & Interfaces, 2017, 9, 24662-24670.	4.0	37
311	Self-templated formation of CuCo2O4 triple-shelled hollow microspheres for all-solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 787, 694-699.	2.8	37
312	Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity. Nanoscale Research Letters, 2014, 9, 468.	3.1	36
313	Fabrication of SiO ₂ /TiO ₂ Double-Shelled Hollow Nanospheres with Controllable Size via Sol–Gel Reaction and Sonication-Mediated Etching. ACS Applied Materials & Interfaces, 2014, 6, 15420-15426.	4.0	35
314	Tuning Interior Nanogaps of Double-shelled Au/Ag Nanoboxes for Surface-Enhanced Raman Scattering. Scientific Reports, 2015, 5, 8382.	1.6	35
315	Y ₂ O ₃ :Yb ³⁺ /Er ³⁺ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence. Small, 2015, 11, 2768-2773.	5.2	35
316	Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2015, 182, 327-333.	2.6	35
317	The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180677.	1.0	35
318	Hollow Ball-in-Ball Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanostructures: High-Performance Anode Materials for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 11063-11068.	4.0	34
319	Scalable and controllable synthesis of multi-shell hollow carbon microspheres for high-performance supercapacitors. Carbon, 2019, 154, 330-341.	5.4	34
320	Design of three-dimensional hierarchical TiO ₂ /SrTiO ₃ heterostructures towards selective CO ₂ photoreduction. Inorganic Chemistry Frontiers, 2019, 6, 1667-1674.	3.0	33
321	CoMoSx@Ni-CoMoSx double-shelled cage-in-cage hollow polyhedron as enhanced Pt-free catalytic material for high-efficiency dye-sensitized solar cell. Journal of Power Sources, 2019, 417, 21-28.	4.0	33
322	Synthesis and Performance of CuO with Complex Hollow Structure as Anode Material for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2011, 158, A814.	1.3	32
323	l-Histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 12361-12367.	5.2	32
324	Template-assisted synthesis of multi-shelled carbon hollow spheres with an ultralarge pore volume as anode materials in Li-ion batteries. RSC Advances, 2015, 5, 3657-3664.	1.7	32

#	Article	IF	CITATIONS
325	Enhanced-absorption template method for preparation of double-shell NiO hollow nanospheres with controllable particle size for nanothermite application. Chemical Engineering Journal, 2020, 379, 122330.	6.6	32
326	Generalized synthesis of a family of multishelled metal oxide hollow microspheres. Journal of Materials Chemistry A, 2013, 1, 3575.	5.2	31
327	Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries. Journal of Power Sources, 2015, 284, 481-488.	4.0	31
328	Porous Double-shelled SnO 2 @ C Hollow Spheres as High-Performance Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2016, 195, 208-215.	2.6	31
329	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	3.7	31
330	Feasibility of using hollow double walled Mn2O3 nanocubes for hybrid Na-air battery. Chemical Engineering Journal, 2019, 360, 415-422.	6.6	31
331	Surfactant-free sacrificial template synthesis of submicrometer-sized YVO4:Eu3+ hierarchical hollow spheres with tunable textual parameters and luminescent properties. Dalton Transactions, 2013, 42, 3986.	1.6	30
332	Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction. RSC Advances, 2016, 6, 10341-10351.	1.7	30
333	Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes. Scientific Reports, 2017, 7, 46378.	1.6	30
334	Controlled Architecture of Hybrid Polymer Nanocapsules with Tunable Morphologies by Manipulating Surface-Initiated ARGET ATRP from Hydrothermally Modified Polydopamine. Chemistry of Materials, 2017, 29, 10212-10219.	3.2	30
335	In-situ formation of supported Au nanoparticles in hierarchical yolk-shell CeO 2 /mSiO 2 structures as highly reactive and sinter-resistant catalysts. Journal of Colloid and Interface Science, 2017, 488, 196-206.	5.0	30
336	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	5.2	30
337	Perovskite-type ZnSn(OH)6 hollow cubes with controllable shells for enhanced formaldehyde sensing performance at low temperature. Sensors and Actuators B: Chemical, 2019, 288, 298-306.	4.0	30
338	A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceramics International, 2019, 45, 12558-12562.	2.3	30
339	Cabbage-shaped zinc-cobalt oxide (ZnCo2O4) sensing materials: Effects of zinc ion substitution and enhanced formaldehyde sensing properties. Journal of Colloid and Interface Science, 2019, 537, 520-527.	5.0	30
340	Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications. Nanoscale, 2016, 8, 8687-8695.	2.8	29
341	Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photo-catalytic performance. Materials Research Bulletin, 2018, 99, 331-335.	2.7	29
342	General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35060-35067.	4.0	29

#	Article	IF	CITATIONS
343	Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application. RSC Advances, 2013, 3, 5649.	1.7	28
344	Facile fabrication of LiMn2O4 microspheres from multi-shell MnO2 for high-performance lithium-ion batteries. Materials Letters, 2014, 135, 75-78.	1.3	28
345	Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance. Electrochimica Acta, 2015, 186, 436-441.	2.6	28
346	Construction of hybrid multi-shell hollow structured CeO ₂ –MnO _x materials for selective catalytic reduction of NO with NH ₃ . RSC Advances, 2017, 7, 5989-5999.	1.7	28
347	Doubleâ€ S helled TiO ₂ Hollow Spheres Assembled with TiO ₂ Nanosheets. Chemistry - A European Journal, 2017, 23, 4336-4343.	1.7	28
348	Multi-shelled FeCo2O4 hollow porous microspheres/CCFs magnetic hybrid and its dual-functional catalytic performance. Chemical Engineering Journal, 2017, 330, 792-803.	6.6	28
349	Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 214-221.	5.0	28
350	Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries. Journal of Materials Science, 2018, 53, 2735-2747.	1.7	28
351	Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510.	5.2	28
352	Facile fabrication of multishelled SnO 2 hollow microspheres for gas sensing application. Materials Letters, 2016, 164, 56-59.	1.3	27
353	A yolk-double-shelled heterostructure-based sensor for acetone detecting application. Journal of Colloid and Interface Science, 2019, 539, 490-496.	5.0	27
354	Contribution of multiple reflections to light utilization efficiency of submicron hollow TiO2 photocatalyst. Science China Materials, 2016, 59, 1017-1026.	3.5	26
355	Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity. Dalton Transactions, 2017, 46, 1634-1644.	1.6	26
356	Porous multishelled NiO hollow microspheres encapsulated within three-dimensional graphene as flexible free-standing electrodes for high-performance supercapacitors. Nanoscale, 2019, 11, 16071-16079.	2.8	26
357	Hollow multi-shelled structures for energy conversion and storage applications. Inorganic Chemistry Frontiers, 2019, 6, 2239-2259.	3.0	26
358	Rationally Designed Doubleâ€Shell Dodecahedral Microreactors with Efficient Photoelectron Transfer: Nâ€Dopedâ€Câ€Encapsulated Ultrafine In ₂ O ₃ Nanoparticles. Chemistry - A European Journal, 2019, 25, 3053-3060.	1.7	26
359	Synthesis of SnO2 hollow nanostructures with controlled interior structures through a template-assisted hydrothermal route. Dalton Transactions, 2011, 40, 8517.	1.6	25
360	Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles. Scientific Reports, 2015, 5, 8737.	1.6	25

#	Article	IF	CITATIONS
361	Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253.	3.5	25
362	Kinetically Controlled Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Micro- and Nanostructured Hollow Spheres as High-Rate Cathode Materials for Lithium Ion Batteries. Industrial & Engineering Chemistry Research, 2016, 55, 9352-9361.	1.8	25
363	Oneâ€pot Syntheses of Spinel <scp>AB₂O₄</scp> (A = Ni or Co, B =â€% Microspheres with Different Hollow Interiors for Supercapacitors Application. Chinese Journal of Chemistry, 2017, 35, 67-72.	₀Mn or Fe) 2.6	25
364	Double-shelled hollow LaNiO3 nanocage as nanoreactors with remarkable catalytic performance: Illustrating the special morphology and performance relationship. Molecular Catalysis, 2018, 455, 57-67.	1.0	25
365	Rationalized Fabrication of Structure-Tailored Multishelled Hollow Silica Spheres. Chemistry of Materials, 2019, 31, 7470-7477.	3.2	25
366	Fabrication of Zn2SnO4 microspheres with controllable shell numbers for highly efficient dye-sensitized solar cells. Solar Energy, 2019, 181, 424-429.	2.9	25
367	Surface-Enhanced Raman Spectroscopy of Double-Shell Hollow Nanoparticles: Electromagnetic and Chemical Enhancements. Langmuir, 2013, 29, 6253-6261.	1.6	24
368	Investigation of the Enhanced Lithium Battery Storage in a Polyoxometalate Model: From Solid Spheres to Hollow Balls. Small Methods, 2018, 2, 1800154.	4.6	24
369	In situ doping of Pt active sites via Sn in double-shelled TiO ₂ hollow nanospheres with enhanced photocatalytic H ₂ production efficiency. New Journal of Chemistry, 2017, 41, 11089-11096.	1.4	24
370	Synthesis of double-shelled copper chalcogenide hollow nanocages as efficient counter electrodes for quantum dot-sensitized solar cells. Materials Today Energy, 2017, 5, 331-337.	2.5	23
371	Hollow multi-shell structured SnO ₂ with enhanced performance for ultraviolet photodetectors. Inorganic Chemistry Frontiers, 2019, 6, 1968-1972.	3.0	23
372	"One-for-All―strategy to design oxygen-deficient triple-shelled MnO ₂ and hollow Fe ₂ O ₃ microcubes for high energy density asymmetric supercapacitors. Dalton Transactions, 2019, 48, 8623-8632.	1.6	23
373	Encapsulation pyrolysis synchronous deposition for hollow carbon sphere with tunable textural properties. Carbon, 2019, 143, 467-474.	5.4	23
374	Synthesis of multi-shell carbon microspheres. Carbon, 2006, 44, 190-193.	5.4	22
375	Facile synthesis, magnetic and optical properties of double-shelled Co3O4 hollow microspheres. Advanced Powder Technology, 2014, 25, 1780-1785.	2.0	22
376	Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol. Small, 2019, 15, e1804688.	5.2	22
377	Coordination competition-driven synthesis of triple-shell hollow α-Fe2O3 microspheres for lithium ion batteries. Electrochimica Acta, 2019, 306, 151-158.	2.6	22
378	Mesoporous Nb2O5 microspheres with filled and yolk-shell structure as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 776, 722-730.	2.8	22

#	Article	IF	CITATIONS
379	Enhanced water retention and stable dynamic water behavior of sulfonated poly(ether ether ketone) membranes under low humidity by incorporating humidity responsive double-shelled hollow spheres. Journal of Materials Chemistry A, 2013, 1, 11762.	5.2	21
380	Precursor-mediated synthesis of double-shelled V ₂ O ₅ hollow nanospheres as cathode material for lithium-ion batteries. CrystEngComm, 2016, 18, 4068-4073.	1.3	21
381	Synthesis of Hollow Mesoporous TiO ₂ Microspheres with Single and Double Au Nanoparticle Layers for Enhanced Visibleâ€Light Photocatalysis. Chemistry - an Asian Journal, 2018, 13, 432-439.	1.7	21
382	Synthesis of composite eccentric double-shelled hollow spheres. Polymer, 2009, 50, 3943-3949.	1.8	20
383	Facile Synthesis of Doubleâ€Shelled Polypyrrole Hollow Particles with a Structure Similar to That of a Thermal Bottle. Macromolecular Rapid Communications, 2010, 31, 1863-1868.	2.0	20
384	Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route. Chinese Chemical Letters, 2013, 24, 1-6.	4.8	20
385	An unusual temperature gradient crystallization process: facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers. CrystEngComm, 2014, 16, 7933-7941.	1.3	20
386	Magnetic C–C@Fe ₃ O ₄ double-shelled hollow microspheres via aerosol-based Fe ₃ O ₄ @C-SiO ₂ core–shell particles. Chemical Communications, 2015, 51, 2991-2994.	2.2	20
387	Cu ₂ O hollow structures—microstructural evolution and photocatalytic properties. RSC Advances, 2016, 6, 103700-103706.	1.7	20
388	Designed synthesis of MO _x (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures. Nanoscale, 2016, 8, 19684-19695.	2.8	20
389	Fabrication of Ellipsoidal Silica Yolk–Shell Magnetic Structures with Extremely Stable Au Nanoparticles as Highly Reactive and Recoverable Catalysts. Langmuir, 2017, 33, 2698-2708.	1.6	20
390	Highly active CeO2 hollow-shell spheres with Al doping. Science China Materials, 2017, 60, 646-653.	3.5	20
391	Multi-shelled copper oxide hollow spheres and their gas sensing properties. Materials Research Bulletin, 2017, 87, 214-218.	2.7	20
392	In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability. Applied Surface Science, 2017, 392, 36-45.	3.1	20
393	Delicate Control of Multishelled Zn–Mn–O Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Langmuir, 2018, 34, 1242-1248.	1.6	20
394	Al-Stabilized Double-Shelled Hollow CaO-Based Microspheres with Superior CO ₂ Adsorption Performance. Energy & Fuels, 2018, 32, 9692-9700.	2.5	20
395	Aerosol construction of multi-shelled LiMn ₂ O ₄ hollow microspheres as a cathode in lithium ion batteries. New Journal of Chemistry, 2016, 40, 1839-1844.	1.4	19
396	Biomimetic hierarchical walnut kernel-like and erythrocyte-like mesoporous silica nanomaterials: Controllable synthesis and versatile applications. Microporous and Mesoporous Materials, 2018, 261, 144-149.	2.2	19

#	Article	IF	CITATIONS
397	Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 756, 93-102.	2.8	19
398	Morphology control and fabrication of multi-shelled NiO spheres by tuning the pH value via a hydrothermal process. CrystEngComm, 2014, 16, 11096-11101.	1.3	18
399	Facile fabrication of multishelled Cr2O3 hollow microspheres with enhanced gas sensitivity. Materials Letters, 2015, 140, 158-161.	1.3	18
400	Synthesis of NiO-TiO 2 hybrids/mSiO 2 yolk-shell architectures embedded with ultrasmall gold nanoparticles for enhanced reactivity. Applied Surface Science, 2017, 412, 616-626.	3.1	18
401	The template-assisted synthesis of polypyrrole hollow microspheres with a double-shelled structure. Chemical Communications, 2015, 51, 5009-5012.	2.2	17
402	Robust, double-shelled ZnGa ₂ O ₄ hollow spheres for photocatalytic reduction of CO ₂ to methane. Dalton Transactions, 2017, 46, 10564-10568.	1.6	17
403	Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties. Journal of Solid State Chemistry, 2010, 183, 1704-1709.	1.4	16
404	Rapid microwave-assisted synthesis of ball-in-ball CuO microspheres and its application as a H2O2 sensor. Materials Letters, 2013, 92, 96-99.	1.3	16
405	Ionic liquid assisted hydrothermal synthesis of hollow core/shell MoS2 microspheres. Materials Letters, 2015, 160, 550-554.	1.3	16
406	Preparation and electrochemical properties of double-shell LiNi _{0.5} Mn _{1.5} O ₄ hollow microspheres as cathode materials for Li-ion batteries. RSC Advances, 2016, 6, 45369-45375.	1.7	16
407	Double-shell CeO2@TiO2 hollow spheres composites with enhanced light harvesting and electron transfer in dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 722, 864-871.	2.8	16
408	Fabrication of hollow spheres of metal oxide using fructose-derived carbonaceous spheres as sacrificial templates. Comptes Rendus Chimie, 2015, 18, 379-384.	0.2	15
409	Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency. Applied Physics Letters, 2016, 108, .	1.5	15
410	Fabrication and photocatalytic properties of SnO2 double-shelled and triple-shelled hollow spheres. Solid State Sciences, 2016, 56, 63-67.	1.5	15
411	Fabrication of CeO ₂ –MO <i>_x</i> (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation. Beilstein Journal of Nanotechnology, 2017, 8, 2425-2437.	1.5	15
412	Sn ²⁺ -Doped Double-Shelled TiO ₂ Hollow Nanospheres with Minimal Pt Content for Significantly Enhanced Solar H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 7128-7137.	3.2	15
413	Design of SnO2@Air@TiO2 hierarchical urchin-like double-hollow nanospheres for high performance dye-sensitized solar cells. Solar Energy, 2019, 189, 412-420.	2.9	15
414	Multi-layered zeolitic imidazolate framework based self-templated synthesis of nitrogen-doped hollow porous carbon dodecahedrons as robust substrates for supercapacitors. New Journal of Chemistry, 2019, 43, 2171-2178.	1.4	15

#	Article	IF	CITATIONS
415	Preparation of Double-Shelled C/SiO ₂ Hollow Spheres with Enhanced Adsorption Capacity. Industrial & Engineering Chemistry Research, 2015, 54, 641-648.	1.8	14
416	Unique porous yolk-shell structured Co3O4 anode for high performance lithium ion batteries. Ceramics International, 2017, 43, 11058-11064.	2.3	14
417	Synthesis of highly defective hollow double-shelled Co3O4â^'x microspheres as sulfur host for high-performance lithium-sulfur batteries. Materials Letters, 2019, 255, 126581.	1.3	14
418	Hollow copper–ceria microspheres with single and multiple shells for preferential CO oxidation. CrystEngComm, 2019, 21, 3619-3626.	1.3	14
419	Fabrication of Hollow and Yolk–Shell Structured Î-Fe2O3 Nanoparticles with Versatile Configurations. Industrial & Engineering Chemistry Research, 2013, 52, 1303-1308.	1.8	13
420	Double-shelled MnO 2 hollow spheres for supercapacitors. Materials Letters, 2014, 136, 78-80.	1.3	13
421	Multishell hollow CeO2/CuO microbox catalysts for preferential CO oxidation in H2-rich stream. Catalysis Communications, 2015, 72, 105-110.	1.6	13
422	Fabrication of Oxygenâ€Doped Doubleâ€Shelled GaN Hollow Spheres toward Efficient Photoreduction of CO ₂ . Particle and Particle Systems Characterization, 2016, 33, 583-588.	1.2	13
423	Ionic liquid assisted hydrothermal synthesis of MoS ₂ double-shell polyhedral cages with enhanced catalytic hydrogenation activities. RSC Advances, 2017, 7, 23523-23529.	1.7	13
424	Yolk @ cage-Shell Hollow Mesoporous Monodispersion Nanospheres of Amorphous Calcium Phosphate for Drug Delivery with High Loading Capacity. Nanoscale Research Letters, 2017, 12, 275.	3.1	13
425	Template-free synthesis of hierarchical MoO2 multi-shell architectures with improved lithium storage capability. Materials Research Bulletin, 2017, 91, 85-90.	2.7	13
426	From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials. Scientific Reports, 2017, 7, 15477.	1.6	13
427	Controllable synthesis of multi-shelled NiCo ₂ O ₄ hollow spheres catalytically for the thermal decomposition of ammonium perchlorate. RSC Advances, 2019, 9, 23888-23893.	1.7	13
428	The effect of copper species in copper-ceria catalysts: structure evolution and enhanced performance in CO oxidation. RSC Advances, 2016, 6, 46966-46971.	1.7	12
429	Designing multi-shelled metal oxides: towards high energy-density lithium-ion batteries. Science China Materials, 2016, 59, 521-522.	3.5	12
430	Fabrication of Yolk/Shell Partially Inverse Spinel Cobalt Ferrite/Mesoporous Silica Nanostructured Catalysts for Organic Pollutants Degradation by Peroxymonosulfate Activation. Catalysis Letters, 2017, 147, 1732-1743.	1.4	12
431	Synthesis of multiple-shelled organosilica hollow nanospheres via a dual-template method by using compressed CO 2. Microporous and Mesoporous Materials, 2017, 247, 66-74.	2.2	12
432	Coordination polymer derived general synthesis of multi-shelled hollow metal oxides for lithium-ion batteries. Nanoscale, 2019, 11, 17478-17484.	2.8	12

#	Article	IF	CITATIONS
433	Self-assembly in the synthesis of shelled ZnO hollow spheres and their UV sensors performance. Materials Letters, 2016, 182, 10-14.	1.3	11
434	Rational design of double-shelled Fe-, N-, and S-tridoped hollow mesoporous carbon spheres as high-performance catalysts for organic reactions. Chemical Communications, 2018, 54, 2974-2977.	2.2	11
435	Dual-shelled Cu2O@Cu9S5@MnO2 hollow spheres as advanced cathode material for energy storage. Journal of Alloys and Compounds, 2019, 805, 977-983.	2.8	11
436	Facile synthesis of multi-shelled hollow Cu CeO2 microspheres with promoted catalytic performance for preferential oxidation of CO. Materials Chemistry and Physics, 2019, 226, 158-168.	2.0	11
437	Polypyrrole single and double-shelled nanospheres templated by pyrrole–Hg(II) complex: Synthesis, characterization, formation mechanism and electrochemical performance. Synthetic Metals, 2014, 197, 126-133.	2.1	10
438	Controlled synthesis and lithium storage properties of Mn2O3 triple-shelled hollow spheres and porous spheres. Materials Letters, 2015, 158, 416-419.	1.3	10
439	Fabrication of monodisperse nitrogen-doped carbon double-shell hollow nanoparticles for supercapacitors. RSC Advances, 2017, 7, 20694-20699.	1.7	10
440	Heterogeneous triple-shelled TiO2@NiCo2O4@Co3O4 nanocages as improved performance anodes for lithium-ion batteries. Materials Letters, 2018, 232, 228-231.	1.3	10
441	Stabilizing the nanostructure of SnO2 anode by constructing heterogeneous yolk@shell hollow composite. Applied Surface Science, 2019, 493, 838-846.	3.1	10
442	Co 0.5 Ni 0.5 MoO 4 Doubleâ€Shelled Hollow Spheres with Enhanced Electrochemical Performance for Supercapacitors and Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1801160.	1.8	10
443	Multilayered TiO ₂ @SnO ₂ hollow nanostructures: facile synthesis and enhanced photocatalytic performance. RSC Advances, 2014, 4, 59503-59507.	1.7	9
444	Controlling optical properties of metallic multi-shell nanoparticles through suppressed surface plasmon resonance. Journal of Colloid and Interface Science, 2016, 461, 376-382.	5.0	9
445	The Transformation of Hybrid Silica Nanoparticles from Solid to Hollow or Yolkâ€Shell Nanostructures. Chemistry - A European Journal, 2017, 23, 8066-8072.	1.7	9
446	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	1.7	9
447	Strategy for Multifunctional Hollow Shelled Triple Oxide Mn–Cu–Al Nanocomposite Synthesis via Microwave-Assisted Technique. ACS Sustainable Chemistry and Engineering, 2018, 6, 1009-1021.	3.2	9
448	The investigation of Ag decorated doubleâ€wall hollow TiO ₂ spheres as photocatalyst. Applied Organometallic Chemistry, 2018, 32, e4160.	1.7	9
449	Nanoâ€resolesâ€Enabled Elegant Nanostructured Materials. Chemistry - A European Journal, 2018, 24, 14598-14607.	1.7	8
450	Synthetic architecture of integrated nanocatalysts with controlled spatial distribution of metal nanoparticles. Chemical Engineering Journal, 2019, 355, 320-334.	6.6	8

#	Article	IF	CITATIONS
451	Carbon@carbon double hollow spheres as efficient cathode host for high rate Li S battery. Materials Chemistry and Physics, 2019, 225, 309-315.	2.0	8
452	A Facile Process for the Preparation of Threeâ€Dimensional Hollow Zn(OH) ₂ Nanoflowers at Room Temperature. Chemistry - A European Journal, 2016, 22, 11143-11147.	1.7	7
453	Formaldehyde Controlling the Synthesis of Multishelled SiO ₂ /Fe <i>_x</i> O <i>_y</i> Hollow Porous Spheres. Langmuir, 2018, 34, 8223-8229.	1.6	7
454	One-pot synthesis of double-shelled ZnV2O4 hollow nanostructures via a template-free route. Materials Letters, 2013, 92, 231-234.	1.3	6
455	Activation of the Solid Silica Layer of Aerosol-Based C/SiO ₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres. Langmuir, 2015, 31, 5164-5173.	1.6	6
456	Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability. Journal of Nanomaterials, 2016, 2016, 1-6.	1.5	6
457	Facile fabrication of doubleâ€walled polymeric hollow spheres with independent temperature and pH dualâ€responsiveness for synergetic drug delivery. Journal of Applied Polymer Science, 2016, 133, .	1.3	6
458	Synthesis of double-shell hollow magnetic Au-loaded ellipsoids as highly active and recoverable nanoreactors. New Journal of Chemistry, 2017, 41, 4448-4457.	1.4	6
459	Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells. Chinese Physics Letters, 2015, 32, 024205.	1.3	5
460	Large scale combustion synthesis of glass-γ-Fe ₂ O ₃ double shell composite hollow microspheres with tunable magnetic property. RSC Advances, 2016, 6, 47089-47095.	1.7	5
461	Novel template free synthetic strategy to single crystalline multishelled hollow nanospheroids of titania with boosted application potential. RSC Advances, 2016, 6, 24210-24217.	1.7	5
462	Preparation of P(MBAâ€ <i>co</i> â€MAA)/Zr(OH) ₄ /P(EGDMAâ€ <i>co</i> â€MAA)/TiO ₂ Tetra″ayer Hybrid Microspheres and the Corresponding ZrO ₂ /TiO ₂ Doubleâ€shelled Hollow Microspheres. Chinese Journal of Chemistry, 2014, 32, 163-171.	2.6	4
463	Studies on pH-Controlled Transition of Myoglobin Capsules from Hollow to Multilayered Structures. Adsorption Science and Technology, 2015, 33, 759-768.	1.5	4
464	Three-dimensional observation of SiO2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy. Microscopy (Oxford, England), 2012, 61, 159-169.	0.7	3
465	Multi-shelled LiMn1.95Co0.05O4 cages with a tunable Mn oxidation state for ultra-high lithium storage. New Journal of Chemistry, 2018, 42, 3953-3960.	1.4	3
466	Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	2
467	Controllable Preparation of V2O5 Hollow Microspheres as Cathode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2017, , 6885-6894.	0.5	2
468	Mild Strategy to Fabricate Mnx Co3â^'xO4 Multi-Shelled Hollow Spheres with Superior Catalytic Property in CO Oxidation. Journal of Nanoscience and Nanotechnology, 2018, 18, 7775-7785.	0.9	2

#	ARTICLE	IF	CITATIONS
469	Hybrid Supercapacitors from Framework Materials. CheM, 2016, 1, 21-23.	5.8	1
470	Fabrication and characterization of doubleâ€shelled CeO ₂ ‣a ₂ O ₃ /Au/Fe ₃ O ₄ hollow architecture as a recyclable and highly thermal stability nanocatalyst. Applied Organometallic Chemistry, 2018, 32, e4201.	1.7	1
471	The building of ZnO double-shells hollow spheres for CdS quantum dots sensitized solar cell. IOP Conference Series: Materials Science and Engineering, 0, 479, 012050.	0.3	1
472	Gelled Polymer Electrolytes. , 2015, , 414-457.		0
473	An Acoustic Hyperlens with Negative Direction Based on Double Split Hollow Sphere. Journal of Theoretical and Computational Acoustics, 2019, 27, 1850025.	0.5	0
474	Synthesis of Multi-shelled Mn-doped ZnO â^ž Hollow spheres. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, , .	0.6	0