
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601466/publications.pdf Version: 2024-02-01

MIN WEI

#	Article	IF	CITATIONS
1	An Ultrasensitive DNA Sensor for Hg ²⁺ Assay Based on Electrodeposited Au/Carbon Nanofibersâ€chitosan and Reduced Graphene Oxide. Electroanalysis, 2023, 35, .	1.5	1
2	A low-noise ratiometric fluorescence biosensor for detection of Pb2+ based on DNAzyme and exonuclease Ill–assisted cascade signal amplification. Analytical and Bioanalytical Chemistry, 2022, 414, 1899-1907.	1.9	15
3	A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Analytica Chimica Acta, 2022, 1198, 339566.	2.6	33
4	A methylene blue and Ag+ ratiometric electrochemical aptasensor based on Au@Pt/Fe-N-C signal amplification strategy for zearalenone detection. Sensors and Actuators B: Chemical, 2022, 362, 131825.	4.0	17
5	Triple-Helix Molecular Switch Triggered Cleavage Effect of DNAzyme for Ultrasensitive Electrochemical Detection of Chloramphenicol. ACS Applied Materials & Interfaces, 2022, 14, 24681-24689.	4.0	16
6	A ratiometric fluorescent aptamer homogeneous biosensor based on hairpin structure aptamer for AFB1 detection. Journal of Fluorescence, 2022, 32, 1695-1701.	1.3	8
7	A ratiometric electrochemical aptasensor for ochratoxin A detection. Journal of the Chinese Chemical Society, 2021, 68, 1271-1278.	0.8	8
8	Electrochemical Aptasensor for Zearalenone Based on DNA Assembly and Exonuclease III as Amplification Strategy. Electroanalysis, 2021, 33, 1691-1698.	1.5	5
9	Exonuclease III-Driven Dual-Amplified Electrochemical Aptasensor Based on PDDA-Gr/PtPd@Ni-Co Hollow Nanoboxes for Chloramphenicol Detection. ACS Applied Materials & Interfaces, 2021, 13, 26362-26372.	4.0	16
10	An amplified electrochemical aptasensor for ochratoxin A based on DNAzyme-mediated DNA walker. Journal of Electroanalytical Chemistry, 2021, 891, 115269.	1.9	12
11	A homogeneous electrochemical aptasensor based on <scp>DNA</scp> assembly for zearalenone detection. Journal of the Chinese Chemical Society, 2021, 68, 1998-2005.	0.8	4
12	Magnetic beads–assisted fluorescence aptasensing approach based on dual DNA tweezers for detection of ochratoxin A and fumonisin B1 in wine and corn. Analytical and Bioanalytical Chemistry, 2021, 413, 6677-6685.	1.9	6
13	Sensitive electrochemical aptasensor for determination of sulfaquinoxaline based on AuPd NPs@UiO-66-NH2/CoSe2 and RecJf exonuclease-assisted signal amplification. Analytica Chimica Acta, 2021, 1182, 338948.	2.6	16
14	The effect of microwave stabilization on the properties of whole wheat flour and its further interpretation by molecular docking. BMC Chemistry, 2021, 15, 57.	1.6	3
15	A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1. Analytical and Bioanalytical Chemistry, 2021, 413, 7587-7595.	1.9	10
16	Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Mikrochimica Acta, 2020, 187, 102.	2.5	35
17	Development of an electrochemical aptasensor using Au octahedra and graphene for signal amplification. Analytical Methods, 2020, 12, 317-323.	1.3	16
18	A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection. Talanta, 2020, 209, 120599.	2.9	33

#	Article	IF	CITATIONS
19	Development of the signal amplification based on Au@Pt/MIL-101(Cr) as mimetic enzyme and RecJf exonuclease-assistant target recycling. Sensors and Actuators B: Chemical, 2020, 312, 128019.	4.0	13
20	A novel signalâ€on fluorescent aptasensor for ochratoxin A detection based on RecJ f exonucleaseâ€induced signal amplification. Journal of the Chinese Chemical Society, 2020, 67, 1247-1253.	0.8	6
21	An electrochemical aptasensor for lead ion detection based on catalytic hairpin assembly and porous carbon supported platinum as signal amplification. RSC Advances, 2020, 10, 6647-6653.	1.7	19
22	Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and <scp>d</scp> -amino acids. Nanoscale, 2020, 12, 4959-4967.	2.8	38
23	A novel honeycomb Fe-N-C composition derived from wheat flour as an efficiency catalyst for the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2020, 24, 1105-1112.	1.2	9
24	Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO2 nanosheets. Biosensors and Bioelectronics, 2019, 145, 111705.	5.3	71
25	A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Food Chemistry, 2019, 282, 141-146.	4.2	75
26	Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of β-cyclodextrin polymer. Biosensors and Bioelectronics, 2019, 129, 58-63.	5.3	74
27	A voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods and thymine-Hg(II)-thymine interaction. Mikrochimica Acta, 2019, 186, 264.	2.5	20
28	A novel electrochemical aptasensor for fumonisin B1 determination using DNA and exonuclease-I as signal amplification strategy. BMC Chemistry, 2019, 13, 129.	1.6	13
29	Counterions-mediated gold nanorods-based sensor for label-free detection of poly(ADP-ribose) polymerase-1 activity and its inhibitor. Sensors and Actuators B: Chemical, 2018, 259, 565-572.	4.0	26
30	Novel Fluorescence Switch for MicroRNA Imaging in Living Cells Based on DNAzyme Amplification Strategy. ACS Applied Materials & amp; Interfaces, 2018, 10, 43405-43410.	4.0	72
31	Improving the fluorometric determination of the cancer biomarker 8-hydroxy-2′-deoxyguanosine by using a 3D DNA nanomachine. Mikrochimica Acta, 2018, 185, 494.	2.5	19
32	A sensitive fluorescence "turn-off-on―biosensor for poly(ADP-ribose) polymerase-1 detection based on cationic conjugated polymer-MnO2 nanosheets. Sensors and Actuators B: Chemical, 2018, 273, 1047-1053.	4.0	27
33	The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification. Chemistry Central Journal, 2018, 12, 45.	2.6	17
34	Ultrasensitive aptasensor with DNA tetrahedral nanostructure for Ochratoxin A detection based on hemin/G-quadruplex catalyzed polyaniline deposition. Sensors and Actuators B: Chemical, 2018, 276, 1-7.	4.0	47
35	Application of Spectral Crosstalk Correction for Improving Multiplexed MicroRNA Detection Using a Single Excitation Wavelength. Analytical Chemistry, 2017, 89, 3430-3436.	3.2	44
36	A novel impedimetric aptasensor based on AuNPs–carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Advances, 2017, 7, 28655-28660.	1.7	32

#	Article	IF	CITATIONS
37	A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization. Biosensors and Bioelectronics, 2017, 91, 347-353.	5.3	37
38	Visual, Label-Free Telomerase Activity Monitor via Enzymatic Etching of Gold Nanorods. Analytical Chemistry, 2017, 89, 12094-12100.	3.2	77
39	A signal-off aptasensor for the determination of Ochratoxin A by differential pulse voltammetry at a modified Au electrode using methylene blue as an electrochemical probe. Analytical Methods, 2017, 9, 5449-5454.	1.3	18
40	Visual and fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Mikrochimica Acta, 2017, 184, 3453-3460.	2.5	9
41	Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Mikrochimica Acta, 2017, 184, 3461-3468.	2.5	30
42	A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosensors and Bioelectronics, 2017, 87, 600-606.	5.3	63
43	Chiroplasmonic Assemblies of Gold Nanoparticles for Ultrasensitive Detection of 8-Hydroxy-2′-deoxyguanosine in Human Serum Sample. Analytical Chemistry, 2016, 88, 6509-6514.	3.2	46
44	Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core–shell nanoparticles. RSC Advances, 2016, 6, 35001-35007.	1.7	70
45	Ultrasensitive photometric and visual determination of organophosphorus pesticides based on the inhibition of enzyme-triggered formation of core-shell gold-silver nanoparticles. Mikrochimica Acta, 2016, 183, 2941-2948.	2.5	28
46	Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels. Analytical Chemistry, 2016, 88, 8107-8114.	3.2	64
47	Label-free ultrasensitive detection of telomerase activity via multiple telomeric hemin/G-quadruplex triggered polyaniline deposition and a DNA tetrahedron-structure regulated signal. Chemical Communications, 2016, 52, 1796-1799.	2.2	57
48	A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sensors and Actuators B: Chemical, 2015, 211, 290-296.	4.0	99
49	Label-free electrochemical detection of methyltransferase activity and inhibitor screening based on endonuclease Hpall and the deposition of polyaniline. Biosensors and Bioelectronics, 2015, 73, 188-194.	5.3	39
50	Carbon Aerogels Supported Pt Nanoparticles as Electrocatalysts for Methanol Oxidation in Alkaline Media. Journal of the Chinese Chemical Society, 2014, 61, 404-408.	0.8	6
51	Development of acetylcholinesterase biosensor based on platinum–carbon aerogels composite for determination of organophosphorus pesticides. Food Control, 2014, 36, 49-54.	2.8	51
52	Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Mikrochimica Acta, 2014, 181, 121-127.	2.5	72
53	Electrochemical DNA biosensor based on the BDD nanograss array electrode. Chemistry Central Journal, 2013, 7, 65.	2.6	15
54	Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins. Korean Journal of Chemical Engineering, 2013, 30, 1039-1042.	1.2	7

#	Article	IF	CITATIONS
55	Determination of Organophosphorus Pesticides Based on BDD Electrode Modified with Au/chitosan Fiber. Journal of the Chinese Chemical Society, 2013, 60, 297-302.	0.8	9
56	Optimization of Glutamine Peptide Production from Soybean Meal and Analysis of Molecular Weight Distribution of Hydrolysates. International Journal of Molecular Sciences, 2012, 13, 7483-7495.	1.8	13
57	Silica nanoparticles as a carrier for signal amplification. Reviews in Analytical Chemistry, 2012, 31, .	1.5	11
58	Electrochemical Detection of Catechol on Boronâ€doped Diamond Electrode Modified with Au/TiO ₂ Nanorod Composite. Journal of the Chinese Chemical Society, 2011, 58, 516-521.	0.8	22
59	Determination of Spectinomycin in Human Urine Using CE Coupled with Electrogenerated Chemiluminescence. Chromatographia, 2011, 74, 349-353.	0.7	9
60	Preparation and Application of Starch Phosphate With a Low Degree of Substitution. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 974-982.	0.8	11
61	Electrochemical Detection of Catechol Based on Asâ€Grown and Nanograss Array Boronâ€Doped Diamond Electrodes. Electroanalysis, 2010, 22, 199-203.	1.5	65
62	Electrochemical Properties of a Boronâ€Doped Diamond Electrode Modified with Gold/Polyelectrolyte Hollow Spheres. Electroanalysis, 2009, 21, 138-143.	1.5	18
63	Boron-doped diamond nanograss array for electrochemical sensors. Chemical Communications, 2009, , 3624.	2.2	94
64	Comparison of Boronâ€Đoped Diamond and Glassy Carbon Electrodes for Determination of Procaine Hydrochloride. Electroanalysis, 2008, 20, 137-143.	1.5	26
65	Selective Determination of Dopamine on a Boronâ€Doped Diamond Electrode Modified with Gold Nanoparticle/Polyelectrolyteâ€coated Polystyrene Colloids. Advanced Functional Materials, 2008, 18, 1414-1421.	7.8	75