
Xiaowo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601137/publications.pdf Version: 2024-02-01

XIAOWO WANC

#	Article	IF	CITATIONS
1	ARIC: accurate and robust inference of cell type proportions from bulk gene expression or DNA methylation data. Briefings in Bioinformatics, 2022, 23, .	3.2	6
2	YTHDF3 modulates hematopoietic stem cells by recognizing RNA m ⁶ A modification on <i>Ccnd1</i> . Haematologica, 2022, 107, 2381-2394.	1.7	10
3	In silico and in vitro protocols for quantifying gene expression noise modulated by microRNAs. STAR Protocols, 2022, 3, 101205.	0.5	0
4	MeConcord: a new metric to quantitatively characterize DNA methylation heterogeneity across reads and CpG sites. Bioinformatics, 2022, 38, i307-i315.	1.8	2
5	hECA: The cell-centric assembly of a cell atlas. IScience, 2022, 25, 104318.	1.9	21
6	DeSP: a systematic DNA storage error simulation pipeline. BMC Bioinformatics, 2022, 23, 185.	1.2	5
7	Evaluating methylation of human ribosomal DNA at each CpG site reveals its utility for cancer detection using cell-free DNA. Briefings in Bioinformatics, 2022, 23, .	3.2	0
8	Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Molecular Cancer, 2021, 20, 36.	7.9	30
9	cfDNApipe: a comprehensive quality control and analysis pipeline for cell-free DNA high-throughput sequencing data. Bioinformatics, 2021, 37, 4251-4252.	1.8	5
10	OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Research, 2021, 49, W483-W490.	6.5	17
11	The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Research, 2021, 31, 1121-1135.	2.4	36
12	DISMIR: <u>D</u> eep learning-based noninvasive cancer detection by <u>i</u> ntegrating DNA <u>s</u> equence and methylation information of <u>i</u> ndividual cell-free DNA <u>r</u> eads. Briefings in Bioinformatics, 2021, 22, .	3.2	24
13	Characterizing microRNA-mediated modulation of gene expression noise and its effect on synthetic gene circuits. Cell Reports, 2021, 36, 109573.	2.9	11
14	Single-cell Transcriptomes Reveal Characteristics of MicroRNAs in Gene Expression Noise Reduction. Genomics, Proteomics and Bioinformatics, 2021, 19, 394-407.	3.0	5
15	CellTracker: an automated toolbox for single-cell segmentation and tracking of time-lapse microscopy images. Bioinformatics, 2021, 37, 285-287.	1.8	9
16	CRISPR-ERA: A Webserver for Guide RNA Design of Gene Editing and Regulation. Methods in Molecular Biology, 2021, 2189, 65-69.	0.4	3
17	Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics, 2020, 112, 1309-1317.	1.3	21
18	Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Research, 2020, 48, 6403-6412.	6.5	90

XIAOWO WANG

#	Article	IF	CITATIONS
19	Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood, 2020, 136, 183-198.	0.6	53
20	A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging, 2019, 11, 4011-4031.	1.4	8
21	Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. Journal of Hematology and Oncology, 2019, 12, 97.	6.9	88
22	Regulation by competition: a hidden layer of gene regulatory network. Quantitative Biology, 2019, 7, 110-121.	0.3	27
23	DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics, 2018, 34, 3223-3224.	1.8	193
24	Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Scientific Reports, 2018, 8, 5779.	1.6	75
25	Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biology, 2018, 19, 18.	3.8	103
26	esATAC: an easy-to-use systematic pipeline for ATAC-seq data analysis. Bioinformatics, 2018, 34, 2664-2665.	1.8	50
27	Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence. Aging, 2018, 10, 1489-1505.	1.4	17
28	HCSGD: An integrated database of human cellular senescence genes. Journal of Genetics and Genomics, 2017, 44, 227-234.	1.7	15
29	Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547, 232-235.	13.7	406
30	Regulation by competing: A hidden layer of gene regulatory networks. , 2017, , .		0
31	Using CRISPR-ERA Webserver for sgRNA Design. Bio-protocol, 2017, 7, e2522.	0.2	2
32	Advances in computational ChIAâ€₽ET data analysis. Quantitative Biology, 2016, 4, 217-225.	0.3	5
33	A quantitative understanding of microRNA―mediated competing endogenous RNA regulation. Quantitative Biology, 2016, 4, 47-57.	0.3	18
34	From big biological data to big discovery: The past decade and the future. Chinese Science Bulletin, 2016, 61, 3869-3877.	0.4	0
35	OP‧ynthetic: identification of optimal genetic manipulations for the overproduction of native and nonâ€native metabolites. Quantitative Biology, 2015, 2, 100-109.	0.3	2
36	MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 2015, 31, 3832-3834.	1.8	34

XIAOWO WANG

#	Article	IF	CITATIONS
37	Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3158-3163.	3.3	117
38	CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation: Fig. 1 Bioinformatics, 2015, 31, 3676-3678.	1.8	171
39	Meta-analytic Insights into the Effects of Different Anti-aging Drugs on Survival Curves of <italic>Caenorhabditis elegans</italic> . Scientia Sinica Vitae, 2015, 45, 479-487.	0.1	4
40	Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Research, 2014, 42, 1052-1064.	6.5	79
41	Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Research, 2014, 42, 6935-6944.	6.5	17
42	Sequence signatures of genes with accompanying antisense transcripts in Saccharomyces cerevisiae. Science China Life Sciences, 2014, 57, 52-58.	2.3	1
43	MIROR: a method for cell-type specific microRNA occupancy rate prediction. Molecular BioSystems, 2014, 10, 1377-1384.	2.9	11
44	CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8, 2180-2196.	5.5	930
45	Basics for Bioinformatics. , 2013, , 1-25.		4
46	H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8971-8976.	3.3	141
47	The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence. Genes and Development, 2012, 26, 1546-1557.	2.7	100
48	Chromatin state and microRNA determine different gene expression dynamics responsive to TNF stimulation. Genomics, 2012, 100, 297-302.	1.3	4
49	Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain. Neuron, 2012, 75, 930-932.	3.8	1
50	Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain. Neuron, 2012, 73, 35-48.	3.8	254
51	Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain. Neuron, 2012, 73, 620.	3.8	5
52	ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes and Development, 2012, 26, 433-438.	2.7	116
53	Observations on novel splice junctions from RNA sequencing data. Biochemical and Biophysical Research Communications, 2011, 409, 299-303.	1.0	16
54	EpiRegNet: Constructing epigenetic regulatory network from high throughput gene expression data for humans. Epigenetics, 2011, 6, 1505-1512.	1.3	19

XIAOWO WANG

#	Article	IF	CITATIONS
55	Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes and Development, 2011, 25, 2125-2136.	2.7	720
56	Dissecting the Unique Role of the Retinoblastoma Tumor Suppressor during Cellular Senescence. Cancer Cell, 2010, 17, 376-387.	7.7	323
57	Identification and Characterization of Human snoRNA Core Promoters. Genomics, 2010, 96, 50-56.	1.3	18
58	DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26, 136-138.	1.8	3,728
59	A Review on The Processing and Analysis of Next-generation RNA-seq Data*. Progress in Biochemistry and Biophysics, 2010, 37, 834-846.	0.3	8
60	High-resolution human core-promoter prediction with CoreBoost_HM. Genome Research, 2009, 19, 266-275.	2.4	96
61	Complicated evolutionary patterns of microRNAs in vertebrates. Science in China Series C: Life Sciences, 2008, 51, 552-559.	1.3	4
62	Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse. BMC Genomics, 2008, 9, 191.	1.2	3
63	Identification of phylogenetically conserved microRNA <i>cis</i> -regulatory elements across 12 <i>Drosophila</i> species. Bioinformatics, 2008, 24, 165-171.	1.8	60
64	Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS). BMC Genomics, 2007, 8, 207.	1.2	13
65	Primary transcripts and expressions of mammal intergenic microRNAs detected by mapping ESTs to their flanking sequences. Mammalian Genome, 2006, 17, 1033-1041.	1.0	33
66	MicroRNA identification based on sequence and structure alignment. Bioinformatics, 2005, 21, 3610-3614.	1.8	270
67	Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget, 0, 7, 41575-41583.	0.8	46