
JarosÅ,aw WÄs..

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8600604/publications.pdf Version: 2024-02-01

ΙΔΡΟςΆ Δυν ΙΔΙΆ

#	Article	IF	CITATIONS
1	Towards efficient GPGPU Cellular Automata model implementation using persistent active cells. Journal of Computational Science, 2022, 59, 101538.	2.9	10
2	A multi-cell Cellular Automata model of traffic flow with emergency vehicles: Effect of a corridor of life and drivers' behaviour. Journal of Computational Science, 2022, 61, 101628.	2.9	5
3	The downselection of measurements used for free space determination in ADAS. Journal of Computational Science, 2022, 63, 101762.	2.9	2
4	A Multi-cell Cellular Automata Model of Traffic Flow with Emergency Vehicles: Effect of a Corridor of Life. Lecture Notes in Computer Science, 2021, , 34-40.	1.3	0
5	What Is the Knowledge of Evacuation Procedures in Road Tunnels? Survey Results of Users in Poland. Buildings, 2021, 11, 146.	3.1	5
6	Human Health Risk Assessment of Air Pollution in the Regions of Unsustainable Heating Sources. Case Study—The Tourist Areas of Southern Poland. Atmosphere, 2021, 12, 615.	2.3	6
7	Post-Implementation ERP Software Development: Upgrade or Reimplementation. Applied Sciences (Switzerland), 2021, 11, 4937.	2.5	8
8	Simulating Pedestrians' Motion in Different Scenarios with Modified Social Force Model. Lecture Notes in Computer Science, 2020, , 467-477.	1.3	3
9	Modeling of Fire Spread Including Different Heat Transfer Mechanisms Using Cellular Automata. Lecture Notes in Computer Science, 2020, , 445-458.	1.3	0
10	HPC Large-Scale Pedestrian Simulation Based on Proxemics Rules. Lecture Notes in Computer Science, 2020, , 489-499.	1.3	1
11	Using Cellular Automata to Model High Density Pedestrian Dynamics. Lecture Notes in Computer Science, 2020, , 486-498.	1.3	3
12	Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere, 2019, 10, 393.	2.3	9
13	An implementation of the Social Distances Model using multi-CPU systems. International Journal of High Performance Computing Applications, 2018, 32, 482-495.	3.7	7
14	Modeling of oil spill spreading disasters using combination of Langrangian discrete particle algorithm with Cellular Automata approach. Ocean Engineering, 2018, 156, 396-405.	4.3	13
15	Pedestrian behavior during evacuation from road tunnel in smoke condition—Empirical results. PLoS ONE, 2018, 13, e0201732.	2.5	22
16	Simulation-Based Analysis of Wind Farms' Economic Viability. Advances in Intelligent Systems and Computing, 2018, , 320-330.	0.6	1
17	Cellular Automata Based Modeling of Competitive Evacuation. Lecture Notes in Computer Science, 2018, , 451-459.	1.3	1
18	A GPU Implemented 3F Cellular Automata-Based Model for a 2D Evacuation Simulation Pattern. , 2017, , .		3

JarosÅ,aw WÄ...s

#	Article	IF	CITATIONS
19	Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians. Physical Review E, 2017, 96, 022307.	2.1	27
20	Adaptation of Social Force Model for simulation of downhill skiing. Journal of Computational Science, 2016, 16, 29-42.	2.9	8
21	Computer Simulation of Traffic Flow Based on Cellular Automata and Multi-agent System. Lecture Notes in Computer Science, 2016, , 517-527.	1.3	7
22	A new algorithm for adapting the configuration of subcomponents in large-scale optimization with cooperative coevolution. Information Sciences, 2016, 372, 773-795.	6.9	34
23	Discrete Modeling and Simulation [Guest editors' introduction]. Computing in Science and Engineering, 2016, 18, 8-10.	1.2	0
24	Cellular Automata as the basis of effective and realistic agent-based models of crowd behavior. Journal of Supercomputing, 2016, 72, 2170-2196.	3.6	26
25	Special issue on Simulation with Cellular Automata. Simulation, 2016, 92, 99-100.	1.8	2
26	Towards Effective GPU Implementation of Social Distances Model for Mass Evacuation. Lecture Notes in Computer Science, 2016, , 550-559.	1.3	2
27	Agent-based Approach and Cellular Automata a Promising Perspective in Crowd Dynamics Modeling?. Acta Physica Polonica B, Proceedings Supplement, 2016, 9, 133.	0.1	6
28	Granularity of Pre-movement Time Distribution in Crowd Evacuation Simulations. , 2016, , 305-312.		1
29	Heuristic rating estimation: geometric approach. Journal of Global Optimization, 2015, 62, 529-543.	1.8	9
30	Discrete vs. Continuous Approach in Crowd Dynamics Modeling Using GPU Computing. Cybernetics and Systems, 2014, 45, 25-38.	2.5	13
31	Pedestrian Spatial Self-organization According to its Nearest Neighbor Position. Transportation Research Procedia, 2014, 2, 201-206.	1.5	12
32	Towards realistic and effective Agent-based models of crowd dynamics. Neurocomputing, 2014, 146, 199-209.	5.9	57
33	Verification and Validation of Evacuation Models – Methodology Expansion Proposition. Transportation Research Procedia, 2014, 2, 715-723.	1.5	11
34	The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics. Lecture Notes in Computer Science, 2014, , 679-688.	1.3	2
35	Application of NIST Technical Note 1822 to CA Crowd Dynamics Models Verification and Validation. Lecture Notes in Computer Science, 2014, , 447-452.	1.3	0
36	Simulation of Pedestrians Behavior in a Shopping Mall. Lecture Notes in Computer Science, 2014, , 650-659.	1.3	1

JarosÅ,aw WÄ...s

#	Article	IF	CITATIONS
37	Three Different Approaches in Pedestrian Dynamics Modeling – A Case Study. Advances in Intelligent Systems and Computing, 2013, , 285-294.	0.6	6
38	Strategies in Crowd and Crowd Structure. Acta Physica Polonica A, 2013, 123, 522-525.	0.5	1
39	Computer modelling of pentoxifylline release from a cylinder-shaped hydroxylapatite carrier. Bio-Algorithms and Med-Systems, 2012, 8, 89.	2.4	Ο
40	Egress Modeling through Cellular Automata Based Multi-Agent Systems. Lecture Notes in Computer Science, 2012, , 222-235.	1.3	3
41	The Application of Cellular Automata to Simulate Drug Release from Heterogeneous Systems. Lecture Notes in Computer Science, 2012, , 561-569.	1.3	1
42	Agent-Based Approach in Evacuation Modeling. Lecture Notes in Computer Science, 2010, , 325-330.	1.3	3
43	Two Concurrent Algorithms of Discrete Potential Field Construction. Lecture Notes in Computer Science, 2010, , 529-538.	1.3	1
44	Crowd Dynamics Modeling in the Light of Proxemic Theories. Lecture Notes in Computer Science, 2010, , 683-688.	1.3	6
45	Multi-agent Systems in Pedestrian Dynamics Modeling. Lecture Notes in Computer Science, 2009, , 294-300.	1.3	6
46	Multi-agent Frame of Social Distances Model. Lecture Notes in Computer Science, 2008, , 567-570.	1.3	6
47	Some Criteria of Making Decisions in Pedestrian Evacuation Algorithms. , 2007, , .		3
48	The Application of the Idea of Extended Cellular Automata for Some Pedestrian Behaviors. , 2007, , 996-1005.		2
49	Knowledge Representation of Pedestrian Dynamics in Crowd: Formalism of Cellular Automata. Lecture Notes in Computer Science, 2006, , 1101-1110.	1.3	12
50	New Cellular Automata Model of Pedestrian Representation. Lecture Notes in Computer Science, 2006, , 724-727.	1.3	7
51	Cellular automata model of pedestrian dynamics for normal and evacuation conditions. , 2005, , .		21