Paul A Desario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8600477/publications.pdf

Version: 2024-02-01

535685 563245 1,450 32 17 28 citations h-index g-index papers 33 33 33 3088 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Protons in Catalytic Architectures: Near (NMR) and Far (Impedance). Journal of the Electrochemical Society, 2022, 169, 036514.	1.3	O
2	Photoenhanced Degradation of Sarin at Cu/TiO ₂ Composite Aerogels: Roles of Bandgap Excitation and Surface Plasmon Excitation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12550-12561.	4.0	26
3	Designing Oxide Aerogels With Enhanced Sorptive and Degradative Activity for Acute Chemical Threats. Frontiers in Materials, 2021, 8, .	1.2	7
4	Synthesis and applications of WO ₃ nanosheets: the importance of phase, stoichiometry, and aspect ratio. Nanoscale Advances, 2021, 3, 5166-5182.	2.2	21
5	Photocatalytic CO Oxidation over Nanoparticulate Au-Modified TiO ₂ Aerogels: The Importance of Size and Intimacy. ACS Catalysis, 2020, 10, 14834-14846.	5. 5	25
6	Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41277-41287.	4.0	13
7	Stabilization of reduced copper on ceria aerogels for CO oxidation. Nanoscale Advances, 2020, 2, 4547-4556.	2.2	12
8	Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO ₂ Aerogel Catalyst. Journal of Physical Chemistry C, 2020, 124, 21491-21501.	1.5	21
9	Mesoporous Copper Nanoparticle/TiO ₂ Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonate. ACS Applied Nano Materials, 2020, 3, 3503-3512.	2.4	21
10	Fabricating architected zinc electrodes with unprecedented volumetric capacity in rechargeable alkaline cells. Energy Storage Materials, 2020, 27, 370-376.	9.5	32
11	Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions. Journal of Electronic Materials, 2019, 48, 5218-5225.	1.0	3
12	Nanosecond transient absorption studies of the pH-dependent hydrated electron quenching by HSO3â^'. Photochemical and Photobiological Sciences, 2019, 18, 1526-1532.	1.6	23
13	Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO2 aerogels. Applied Catalysis B: Environmental, 2019, 252, 205-213.	10.8	47
14	Trapping a Ru ₂ O ₃ Corundum-like Structure at Ultrathin, Disordered RuO ₂ Nanoskins Expressed in 3D. Journal of Physical Chemistry C, 2018, 122, 28895-28900.	1.5	8
15	Static and Time-Resolved Terahertz Measurements of Photoconductivity in Solution-Deposited Ruthenium Dioxide Nanofilms. Journal of Physical Chemistry C, 2017, 121, 4037-4044.	1.5	17
16	Rewriting Electron-Transfer Kinetics at Pyrolytic Carbon Electrodes Decorated with Nanometric Ruthenium Oxide. Langmuir, 2017, 33, 9416-9425.	1.6	5
17	Electroanalytical Assessment of the Effect of Ni:Fe Stoichiometry and Architectural Expression on the Bifunctional Activity of Nanoscale Ni _{<i>y</i>} Fe _{1–<i>y</i>} O <i>x</i> Langmuir, 2017, 33, 9390-9397.	1.6	11
18	Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO ₂ . ACS Applied Materials & amp; Interfaces, 2017, 9, 2387-2395.	4.0	48

#	Article	IF	CITATIONS
19	Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis. Langmuir, 2017, 33, 9444-9454.	1.6	33
20	Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO ₂ nanoarchitectures. Nanoscale, 2017, 9, 11720-11729.	2.8	76
21	Transient Optical and Terahertz Spectroscopy of Nanoscale Films of RuO2. Plasmonics, 2017, 12, 743-750.	1.8	6
22	Aberration-corrected Scanning Transmission Electron Microscopy and Spectroscopy of Nonprecious Metal Nanoparticles in Titania Aerogels. Microscopy and Microanalysis, 2016, 22, 324-325.	0.2	0
23	Review of roles for photonic crystals in solar fuels photocatalysis. Journal of Photonics for Energy, 2016, 7, 012007.	0.8	14
24	Two-dimensional gallium nitride realized via grapheneÂencapsulation. Nature Materials, 2016, 15, 1166-1171.	13.3	626
25	Aerogel Architectures Boost Oxygenâ€Evolution Performance of NiFe ₂ O <i>x</i> Spinels to Activity Levels Commensurate with Nickelâ€Rich Oxides. ChemElectroChem, 2016, 3, 1369-1375.	1.7	20
26	Correlating Changes in Electron Lifetime and Mobility on Photocatalytic Activity at Network-Modified TiO ₂ Aerogels. Journal of Physical Chemistry C, 2015, 119, 17529-17538.	1.5	42
27	Plasmonic enhancement of visible-light water splitting with Au–TiO2 composite aerogels. Nanoscale, 2013, 5, 8073.	2.8	130
28	Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO ₂ and Au–TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 15035-15049.	1.5	49
29	Nanoscale structure of Ti _{1â^'<i>x</i>} Nb <i>_y</i> O ₂ mixed-phase thin films: Distribution of crystal phase and dopants. Journal of Materials Research, 2012, 27, 944-950.	1.2	0
30	The effect of Nb substitution on synthesis and photo-response of TiO2 thin films prepared by direct current magnetron sputtering. Thin Solid Films, 2011, 519, 3562-3568.	0.8	11
31	Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Applied Catalysis B: Environmental, 2010, 97, 354-360.	10.8	100
32	CeO ₂ Aerogel-Induced Resilience of Catalytic Ni(OH) ₂ under Oxidizing Conditions. Chemistry of Materials, 0, , .	3.2	3