
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8600132/publications.pdf Version: 2024-02-01

IOHN SVADEN

#	Article	IF	CITATIONS
1	ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. IScience, 2022, 25, 104132.	1.9	3
2	Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. ELife, 2021, 10, .	2.8	63
3	MicroRNAs as Biomarkers of Charcot-Marie-Tooth Disease Type 1A. Neurology, 2021, 97, e489-e500.	1.5	14
4	Adeno-associated virus gene therapy to the rescue for Charcot-Marie-Tooth disease type 4J. Journal of Clinical Investigation, 2021, 131, .	3.9	0
5	Genome-Edited Coincidence and PMP22-HiBiT Fusion Reporter Cell Lines Enable an Artifact-Suppressive Quantitative High-Throughput Screening Strategy for <i>PMP22</i> Gene-Dosage Disorder Drug Discovery. ACS Pharmacology and Translational Science, 2021, 4, 1422-1436.	2.5	6
6	Revisiting the pathogenic mechanism of the GJB1 5' UTR c103C > T mutation causing CMTX1. Neurogenetics, 2021, 22, 149-160.	0.7	1
7	H3K27 demethylases are dispensable for activation of Polycomb-regulated injury response genes in peripheral nerve. Journal of Biological Chemistry, 2021, 297, 100852.	1.6	4
8	Neurofilament light plasma concentration positively associates with age and negatively associates with weight and height in the dog. Neuroscience Letters, 2021, 744, 135593.	1.0	6
9	Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Research, 2020, 1726, 146491.	1.1	30
10	Transmembrane protease serine 5: a novel Schwann cell plasma marker for CMT1A. Annals of Clinical and Translational Neurology, 2020, 7, 69-82.	1.7	25
11	Biâ€allelic mutations in EGR2 cause autosomal recessive demyelinating neuropathy by disrupting the EGR2â€NAB complex. European Journal of Neurology, 2020, 27, 2662-2667.	1.7	1
12	CTCF loss mediates unique DNA hypermethylation landscapes in human cancers. Clinical Epigenetics, 2020, 12, 80.	1.8	32
13	Specification of macroglia by transcription factors. , 2020, , 937-951.		Ο
14	Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves. Human Molecular Genetics, 2020, 29, 1689-1699.	1.4	6
15	Variation in <i>SIPA1L2</i> is correlated with phenotype modification in Charcot– Marie– Tooth disease type 1A. Annals of Neurology, 2019, 85, 316-330.	2.8	33
16	Charcot-Marie-Tooth disease. , 2019, , 53-71.		0
17	Modifier Gene Candidates in Charcot-Marie-Tooth Disease Type 1A: A Case-Only Genome-Wide Association Study. Journal of Neuromuscular Diseases, 2019, 6, 201-211.	1.1	19
18	Schwann cell transcript biomarkers for hereditary neuropathy skin biopsies. Annals of Neurology, 2019, 85, 887-898.	2.8	25

JOHN SVAREN

#	Article	IF	CITATIONS
19	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	1.4	28
20	Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination. Scientific Reports, 2018, 8, 3817.	1.6	17
21	Epigenetic Control of Schwann Cells. Neuroscientist, 2018, 24, 627-638.	2.6	29
22	Genome-Edited Cell Lines for High-Throughput Screening. Methods in Molecular Biology, 2018, 1755, 1-17.	0.4	2
23	Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth disease type 1B. Annals of Clinical and Translational Neurology, 2018, 5, 445-455.	1.7	39
24	Cell transplantation strategies for acquired and inherited disorders of peripheral myelin. Annals of Clinical and Translational Neurology, 2018, 5, 186-200.	1.7	7
25	Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia, 2018, 66, 2487-2502.	2.5	30
26	Regulation of the neuropathy-associated Pmp22 gene by a distal super-enhancer. Human Molecular Genetics, 2018, 27, 2830-2839.	1.4	20
27	A mutation in the <i>Tubb4a</i> gene leads to microtubule accumulation with hypomyelination and demyelination. Annals of Neurology, 2017, 81, 690-702.	2.8	47
28	Dual specificity phosphatase 15 regulates Erk activation in Schwann cells. Journal of Neurochemistry, 2017, 140, 368-382.	2.1	13
29	PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. Journal of Clinical Investigation, 2017, 128, 359-368.	3.9	117
30	Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genomics, 2016, 17, 887.	1.2	11
31	SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locusMTMR2. Human Molecular Genetics, 2016, 25, 3925-3936.	1.4	3
32	Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. Journal of Neuroscience, 2016, 36, 9135-9147.	1.7	71
33	YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nature Neuroscience, 2016, 19, 879-887.	7.1	148
34	Tead1 regulates the expression of <i>Peripheral Myelin Protein 22</i> during Schwann cell development. Human Molecular Genetics, 2016, 25, ddw158.	1.4	44
35	Epigenomic reprogramming in peripheral nerve injury. Neural Regeneration Research, 2016, 11, 1930.	1.6	9
36	Abstract 4434: CTCF acts as a master regulator to direct epigenetic events important for tumor development and progression. , 2016, , .		0

#	Article	IF	CITATIONS
37	Differential Sox10 genomic occupancy in myelinating glia. Glia, 2015, 63, 1897-1914.	2.5	84
38	Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. Journal of Neuroscience, 2015, 35, 8640-8652.	1.7	48
39	Dynamic Regulation of Schwann Cell Enhancers after Peripheral Nerve Injury. Journal of Biological Chemistry, 2015, 290, 6937-6950.	1.6	98
40	Associations Between Early Life Stress and Gene Methylation in Children. Child Development, 2015, 86, 303-309.	1.7	229
41	A Novel Pathway Links Oxidative Stress to Loss of Insulin Growth Factor-2 (IGF2) Imprinting through NF-κB Activation. PLoS ONE, 2014, 9, e88052.	1.1	28
42	In Silico Pooling of ChIP-seq Control Experiments. PLoS ONE, 2014, 9, e109691.	1.1	2
43	Bach2 Regulates Homeostasis of Foxp3+ Regulatory T Cells and Protects against Fatal Lung Disease in Mice. Journal of Immunology, 2014, 192, 985-995.	0.4	87
44	Genome Editing-Enabled HTS Assays Expand Drug Target Pathways for Charcot–Marie–Tooth Disease. ACS Chemical Biology, 2014, 9, 2594-2602.	1.6	31
45	A mutation in the canine gene encoding folliculinâ€interacting protein 2 (FNIP2) associated with a unique disruption in spinal cord myelination. Glia, 2014, 62, 39-51.	2.5	10
46	Haplotype-specific modulation of a SOX10/CREB response element at the Charcot–Marie–Tooth disease type 4C locus SH3TC2. Human Molecular Genetics, 2014, 23, 5171-5187.	1.4	21
47	MicroRNA and transcriptional crosstalk in myelinating glia. Neurochemistry International, 2014, 77, 50-57.	1.9	28
48	Epigenetic susceptibility factors for prostate cancer with aging. Prostate, 2013, 73, 1721-1730.	1.2	45
49	MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes. PLoS Biology, 2013, 11, e1001625.	2.6	198
50	Specification of Macroglia by Transcription Factors. , 2013, , 759-769.		2
51	Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve. Nucleic Acids Research, 2012, 40, 6449-6460.	6.5	81
52	The Nucleosome Remodeling and Deacetylase Chromatin Remodeling (NuRD) Complex Is Required for Peripheral Nerve Myelination. Journal of Neuroscience, 2012, 32, 1517-1527.	1.7	62
53	Developmental Regulation of MicroRNA Expression in Schwann Cells. Molecular and Cellular Biology, 2012, 32, 558-568.	1.1	64
54	Distal enhancers upstream of the Charcot-Marie-Tooth type 1A disease gene PMP22. Human Molecular Genetics, 2012, 21, 1581-1591.	1.4	32

JOHN SVAREN

#	Article	IF	CITATIONS
55	Identification of Drug Modulators Targeting Gene-Dosage Disease CMT1A. ACS Chemical Biology, 2012, 7, 1205-1213.	1.6	46
56	SOX10 regulates expression of the SH3-domain kinase binding protein 1 (Sh3kbp1) locus in Schwann cells via an alternative promoter. Molecular and Cellular Neurosciences, 2012, 49, 85-96.	1.0	12
57	Multivalent Recognition of Histone Tails by the PHD Fingers of CHD5. Biochemistry, 2012, 51, 6534-6544.	1.2	46
58	HDAC-mediated deacetylation of NF-κB is critical for Schwann cell myelination. Nature Neuroscience, 2011, 14, 437-441.	7.1	165
59	SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC Developmental Biology, 2011, 11, 40.	2.1	51
60	Regulation of the PMP22 Gene through an Intronic Enhancer. Journal of Neuroscience, 2011, 31, 4242-4250.	1.7	53
61	Functional Dissection of the Oct6 Schwann Cell Enhancer Reveals an Essential Role for Dimeric Sox10 Binding. Journal of Neuroscience, 2011, 31, 8585-8594.	1.7	72
62	Early Growth Response 1 (Egr1) Regulates Cholesterol Biosynthetic Gene Expression. Journal of Biological Chemistry, 2011, 286, 29501-29510.	1.6	48
63	Locusâ€wide identification of Egr2/Krox20 regulatory targets in myelin genes. Journal of Neurochemistry, 2010, 115, 1409-1420.	2.1	38
64	Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nature Neuroscience, 2010, 13, 1472-1480.	7.1	102
65	Regulation of Memory CD8 T-Cell Differentiation by Cyclin-Dependent Kinase Inhibitor p27 ^{Kip1} . Molecular and Cellular Biology, 2010, 30, 5145-5159.	1.1	21
66	Induction of Myelin Protein Zero by Early Growth Response 2 through Upstream and Intragenic Elements. Journal of Biological Chemistry, 2009, 284, 20111-20120.	1.6	42
67	A methylâ€deficient diet modifies histone methylation and alters <i>lgf2</i> and <i>H19</i> repression in the prostate. Prostate, 2008, 68, 1187-1195.	1.2	75
68	The molecular machinery of myelin gene transcription in Schwann cells. Glia, 2008, 56, 1541-1551.	2.5	211
69	Transcription factor early growth response†induction mediates inflammatory gene expression and brain damage following transient focal ischemia. Journal of Neurochemistry, 2008, 105, 1313-1324.	2.1	57
70	AGING-RELATED LOSS OF INSULIN-LIKE GROWTH FACTOR-2 (Igf2) IMPRINTING IN THE PROSTATE. Journal of Urology, 2008, 179, 394-394.	0.2	1
71	Active Gene Repression by the Egr2·NAB Complex during Peripheral Nerve Myelination. Journal of Biological Chemistry, 2008, 283, 18187-18197.	1.6	54
72	Aging and Cancer-Related Loss of Insulin-like Growth Factor 2 Imprinting in the Mouse and Human Prostate. Cancer Research, 2008, 68, 6797-6802.	0.4	74

#	Article	IF	CITATIONS
73	Regulation of Cholesterol Biosynthetic Genes by the EGR Family of Transcription Factors. FASEB Journal, 2008, 22, 782.33.	0.2	0
74	Repression of EGR target genes by NAB2 and the NuRD complex. FASEB Journal, 2008, 22, 782.24.	0.2	0
75	Locusâ€wide Regulation of Mpz Expression by Egr2 and Sox10. FASEB Journal, 2008, 22, 991.1.	0.2	0
76	Interactions of Sox10 and Egr2 in myelin gene regulation. Neuron Glia Biology, 2007, 3, 377-387.	2.0	69
77	Neuropathy-Associated Egr2 Mutants Disrupt Cooperative Activation of Myelin Protein Zero by Egr2 and Sox10. Molecular and Cellular Biology, 2007, 27, 3521-3529.	1.1	73
78	Cbl-b Regulates Antigen-Induced TCR Down-Regulation and IFN-Î ³ Production by Effector CD8 T Cells without Affecting Functional Avidity. Journal of Immunology, 2007, 179, 7233-7243.	0.4	46
79	Expression of immune response genes in the stifle joint of dogs with oligoarthritis and degenerative cranial cruciate ligament rupture. Veterinary Immunology and Immunopathology, 2007, 119, 214-221.	0.5	28
80	Differential regulation of NAB corepressor genes in Schwann cells. BMC Molecular Biology, 2007, 8, 117.	3.0	20
81	In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. Journal of Neurochemistry, 2006, 98, 1678-1687.	2.1	62
82	NAB2 Represses Transcription by Interacting with the CHD4 Subunit of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. Journal of Biological Chemistry, 2006, 281, 15129-15137.	1.6	94
83	Differential requirement for Lck during primary and memory CD8+ T cell responses. Proceedings of the United States of America, 2006, 103, 16388-16393.	3.3	55
84	Direct Regulation of Myelin Protein Zero Expression by the Egr2 Transactivator. Journal of Biological Chemistry, 2006, 281, 5453-5460.	1.6	83
85	Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. Journal of Neurochemistry, 2005, 93, 737-748.	2.1	83
86	Nab proteins are essential for peripheral nervous system myelination. Nature Neuroscience, 2005, 8, 932-940.	7.1	118
87	Identification of equine P-selectin glycoprotein ligand-1 (CD162). Mammalian Genome, 2005, 16, 66-71.	1.0	6
88	Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses. American Journal of Veterinary Research, 2005, 66, 119-124.	0.3	18
89	252: A Loss of Insulin-Like Growth Factor-2 (IGF2) Imprinting is Modulated by CTCF Downregulation at Senescence in Human Epithelial Cells. Journal of Urology, 2005, 173, 69-69.	0.2	0
90	A Loss of Insulin-like Growth Factor-2 Imprinting Is Modulated by CCCTC-binding Factor Down-regulation at Senescence in Human Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 52218-52226.	1.6	42

JOHN SVAREN

#	Article	IF	CITATIONS
91	The Ddx20/DP103 Dead Box Protein Represses Transcriptional Activation by Egr2/Krox-20. Journal of Biological Chemistry, 2004, 279, 9056-9063.	1.6	56
92	Neurokinin-B Transcription in Erythroid Cells. Journal of Biological Chemistry, 2004, 279, 31348-31356.	1.6	28
93	CD8 T Cell Responses to Lymphocytic Choriomeningitis Virus in Early Growth Response Gene 1-Deficient Mice. Journal of Immunology, 2004, 173, 3855-3862.	0.4	8
94	Role of cell cycle regulator E2F1 in regulating CD8 T cell responses during acute and chronic viral infection. Virology, 2004, 324, 567-576.	1.1	5
95	Role of cell cycle regulator p19ARF in regulating T cell responses. Cellular Immunology, 2002, 219, 119-130.	1.4	13
96	Search for mutations in the EGR2 corepressor proteins, NAB1 and NAB2, in human peripheral neuropathies. Neurogenetics, 2002, 4, 37-41.	0.7	9
97	Modulation of monocyte signaling and pore formation in response to agonists of the nucleotide receptor P2X(7). Journal of Leukocyte Biology, 2002, 72, 222-32.	1.5	55
98	The Transcriptional Corepressor NAB2 Blocks Egr-1-Mediated Growth Factor Activation and Angiogenesis. Biochemical and Biophysical Research Communications, 2001, 283, 480-486.	1.0	51
99	ECR2 Mutations in Inherited Neuropathies Dominant-Negatively Inhibit Myelin Gene Expression. Neuron, 2001, 30, 355-368.	3.8	242
100	mRNA expression of novel CGRP1 receptors and their activity-modifying proteins in hypoxic rat lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L547-L554.	1.3	49
101	Impaired prostate tumorigenesis in Egr1-deficient mice. Nature Medicine, 2001, 7, 101-107.	15.2	153
102	A Novel Activation Function for NAB Proteins in EGR-dependent Transcription of the Luteinizing Hormone β Gene. Journal of Biological Chemistry, 2000, 275, 9749-9757.	1.6	85
103	Comparison of Nucleosome Remodeling by the Yeast Transcription Factor Pho4 and the Glucocorticoid Receptor. Journal of Biological Chemistry, 2000, 275, 9035-9042.	1.6	4
104	EGR1 Target Genes in Prostate Carcinoma Cells Identified by Microarray Analysis. Journal of Biological Chemistry, 2000, 275, 38524-38531.	1.6	160
105	Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Human Molecular Genetics, 1999, 8, 1245-1251.	1.4	124
106	Activation of Luteinizing Hormone Î ² Gene by Gonadotropin-releasing Hormone Requires the Synergy of Early Growth Response-1 and Steroidogenic Factor-1. Journal of Biological Chemistry, 1999, 274, 13870-13876.	1.6	156
107	Novel mutants of NAB corepressors enhance activation by Egr transactivators. EMBO Journal, 1998, 17, 6010-6019.	3.5	66
108	Nab1, a Corepressor of NGFI-A (Egr-1), Contains an Active Transcriptional Repression Domain. Molecular and Cellular Biology, 1998, 18, 512-524.	1.1	100

#	Article	IF	CITATIONS
109	The Transcriptional Corepressor NAB2 Inhibits NGF-induced Differentiation of PC12 Cells. Journal of Cell Biology, 1998, 142, 1075-1082.	2.3	58
110	Requirements for Chromatin Modulation and Transcription Activation by the Pho4 Acidic Activation Domain. Molecular and Cellular Biology, 1998, 18, 5818-5827.	1.1	39
111	TheNab2andStat6Genes Share a Common Transcription Termination Region. Genomics, 1997, 41, 33-39.	1.3	19
112	Transcription factors vs nucleosomes: regulation of the PH05 promoter in yeast. Trends in Biochemical Sciences, 1997, 22, 93-97.	3.7	164
113	Regulation of gene expression by nucleosomes. Current Opinion in Genetics and Development, 1996, 6, 164-170.	1.5	63
114	The Homeodomain Protein Pho2 and the Basic-Helix-Loop-Helix Protein Pho4 Bind DNA Cooperatively at the Yeast PHO5 Promoter. Nucleic Acids Research, 1996, 24, 4479-4486.	6.5	68
115	NAB2, a Corepressor of NGFI-A (Egr-1) and Krox20, Is Induced by Proliferative and Differentiative Stimuli. Molecular and Cellular Biology, 1996, 16, 3545-3553.	1.1	334
116	Interplay between nucleosomes and transcription factors at the yeastPHO5promoter. Seminars in Cell Biology, 1995, 6, 177-183.	3.5	23
117	[8] In Vivo Analysis of nucleosome structure and transcription factor binding in Saccharomyces cerevisiae. Methods in Molecular Genetics, 1995, 6, 153-167.	0.6	22
118	The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter EMBO Journal, 1994, 13, 4856-4862.	3.5	110
119	A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter EMBO Journal, 1994, 13, 4848-4855.	3.5	115
120	Extent of in vivo binding by an upstream activation factor and the role of multiple binding sites in synergistic transcriptional activation Journal of Biological Chemistry, 1994, 269, 20771-20779.	1.6	3
121	Analysis of the competition between nucleosome formation and transcription factor binding Journal of Biological Chemistry, 1994, 269, 9335-9344.	1.6	30
122	A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO Journal, 1994, 13, 4848-55.	3.5	62
123	The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO Journal, 1994, 13, 4856-62.	3.5	67
124	Extent of in vivo binding by an upstream activation factor and the role of multiple binding sites in synergistic transcriptional activation. Journal of Biological Chemistry, 1994, 269, 20771-9.	1.6	4
125	Analysis of the competition between nucleosome formation and transcription factor binding. Journal of Biological Chemistry, 1994, 269, 9335-44.	1.6	27
126	Histones, nucleosomes and transcription. Current Opinion in Genetics and Development, 1993, 3, 219-225.	1.5	84

#	Article	IF	CITATIONS
127	The structure and assembly of active chromatin. Trends in Genetics, 1990, 6, 52-56.	2.9	147
128	DNA denatures upon drying after ethanol precipitation. Nucleic Acids Research, 1987, 15, 8739-8754.	6.5	69