Heike Feldhaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/860006/publications.pdf

Version: 2024-02-01

93 papers 3,091 citations

28 h-index 50 g-index

103 all docs

103 docs citations

103 times ranked 3899 citing authors

#	Article	IF	CITATIONS
1	Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 2011, 36, 533-543.	2.2	451
2	Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biology, 2007, 5, 48.	3.8	244
3	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
4	Unifying external and internal immune defences. Trends in Ecology and Evolution, 2014, 29, 625-634.	8.7	88
5	Bacterial microbiota associated with ants of the genus Tetraponera. Biological Journal of the Linnean Society, 2007, 90, 399-412.	1.6	82
6	Immune reactions of insects on bacterial pathogens and mutualists. Microbes and Infection, 2008, 10, 1082-1088.	1.9	82
7	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
8	Insights into the microbial world associated with ants. Archives of Microbiology, 2005, 184, 199-206.	2.2	80
9	Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiology, 2010, 10, 308.	3.3	72
10	Insects as hosts for mutualistic bacteria. International Journal of Medical Microbiology, 2009, 299, 1-8.	3.6	70
11	Relevance of the Endosymbiosis of Blochmannia floridanus and Carpenter Ants at Different Stages of the Life Cycle of the Host. Applied and Environmental Microbiology, 2006, 72, 6027-6033.	3.1	69
12	Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiology Letters, 2014, 353, 1-10.	1.8	63
13	Endosymbiont Tolerance and Control within Insect Hosts. Insects, 2012, 3, 553-572.	2.2	59
14	The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Scientific Reports, 2016, 6, 39197.	3.3	55
15	Food and Shelter: How Resources Influence Ant Ecology. , 2009, , 115-136.		55
16	Estimating retention benchmarks for salvage logging to protect biodiversity. Nature Communications, 2020, 11, 4762.	12.8	54
17	Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. Molecular Ecology, 2007, 16, 1453-1465.	3.9	52
18	Lifelong commitment to the wrong partner: hybridization in ants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2891-2899.	4.0	52

#	Article	IF	CITATIONS
19	Transcriptional profiling of the endosymbiont <i>Blochmannia floridanus</i> during different developmental stages of its holometabolous ant host. Environmental Microbiology, 2009, 11, 877-888.	3.8	47
20	Patterns of the Crematogaster-Macaranga association: The ant partner makes the difference. Insectes Sociaux, 2003, 50, 9-19.	1,2	46
21	Interspecific Aggression and Resource Monopolization of the Invasive Ant Anoplolepis gracilipes in Malaysian Borneo. Biotropica, 2011, 43, 93-99.	1.6	45
22	Pollutants and Their Interaction with Diseases of Social Hymenoptera. Insects, 2020, 11, 153.	2.2	44
23	Molecular phylogeny of Crematogaster subgenus Decacrema ants (Hymenoptera: Formicidae) and the colonization of Macaranga (Euphorbiaceae) trees. Molecular Phylogenetics and Evolution, 2003, 27, 441-452.	2.7	43
24	Chemical composition of leaf volatiles in Macaranga species (Euphorbiaceae) and their potential role as olfactory cues in host-localization of foundress queens of specific ant partners. Biochemical Systematics and Ecology, 2006, 34, 97-113.	1.3	43
25	Clouded leopard phylogeny revisited: support for species recognition and population division between Borneo and Sumatra. Frontiers in Zoology, 2007, 4, 15.	2.0	43
26	Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. Journal of Insect Physiology, 2013, 59, 611-623.	2.0	41
27	Societies Drifting Apart? Behavioural, Genetic and Chemical Differentiation between Supercolonies in the Yellow Crazy Ant Anoplolepis gracilipes. PLoS ONE, 2010, 5, e13581.	2.5	38
28	Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont. Insect Biochemistry and Molecular Biology, 2011, 41, 529-536.	2.7	36
29	Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC Genomics, 2015, 16, 540.	2.8	33
30	Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biological Invasions, 2010, 12, 677-687.	2.4	31
31	Maintaining an ant-plant symbiosis: secondary polygyny in the Macaranga triloba-Crematogaster sp. association. Die Naturwissenschaften, 2000, 87, 408-411.	1.6	29
32	Effect of forest management on temperate ant communities. Ecosphere, 2018, 9, e02303.	2.2	28
33	Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agriculture, Ecosystems and Environment, 2019, 270-271, 84-92.	5. 3	27
34	Direct and indirect effects of landâ€use intensification on ant communities in temperate grasslands. Ecology and Evolution, 2019, 9, 4013-4024.	1.9	26
35	Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Sociaux, 2013, 60, 475-484.	1.2	25
36	Temporal migration patterns and mating tactics influence size-assortative mating in Rana temporaria. Behavioral Ecology, 2018, 29, 418-428.	2.2	25

#	Article	IF	CITATIONS
37	A shift in colony founding behaviour in the obligate plant-ant Crematogaster (Decacrema) morphospecies 2. Insectes Sociaux, 2005, 52, 222-230.	1.2	24
38	Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthropod Structure and Development, 2016, 45, 475-487.	1.4	24
39	Formicine ants swallow their highly acidic poison for gut microbial selection and control. ELife, 2020, 9, .	6.0	23
40	Ant nutritional ecology: linking the nutritional niche plasticity on individual and colony-level to community ecology. Current Opinion in Insect Science, 2014, 5, 25-30.	4.4	21
41	Molecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus. PLoS ONE, 2012, 7, e43036.	2.5	21
42	Giants, Dwarfs and the Environment – Metamorphic Trait Plasticity in the Common Frog. PLoS ONE, 2014, 9, e89982.	2.5	18
43	Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on co-occurring plants. PLoS ONE, 2018, 13, e0205843.	2.5	18
44	Microbial community composition of nest-carton and adjoining soil of the ant Lasius fuliginosus and the role of host secretions in structuring microbial communities. Fungal Ecology, 2019, 38, 44-53.	1.6	18
45	Development of a chemically defined diet for ants. Insectes Sociaux, 2007, 54, 100-104.	1.2	17
46	Influence of tree hollow characteristics on saproxylic beetle diversity in a managed forest. Biodiversity and Conservation, 2018, 27, 853-869.	2.6	17
47	Population- and sociogenetic structure of the leaf-cutter ant Atta colombica (Formicidae,) Tj ETQq1 1 0.784314	rgBT_/Ove	rlock 10 Tf 5
48	Population fluctuations affect inference in ecological networks of multiâ€species interactions. Oikos, 2014, 123, 589-598.	2.7	15
49	Rapid increase of the parasitic fungus Laboulbenia formicarum in supercolonies of the invasive garden ant Lasius neglectus. Biological Invasions, 2015, 17, 2795-2801.	2.4	15
50	Populationâ€specific effects of developmental temperature on body condition and jumping performance of a widespread E uropean frog. Ecology and Evolution, 2016, 6, 3115-3128.	1.9	15
51	Dispersal of Saproxylic Insects. Zoological Monographs, 2018, , 515-546.	1.1	15
52	Estimation of dispersal distances of the obligately plantâ€associated ant <i>Crematogaster decamera</i> . Ecological Entomology, 2010, 35, 662-671.	2.2	14
53	Environmental factors fail to explain oviposition site use in the <scp>E</scp> uropean common frog. Journal of Zoology, 2012, 288, 103-111.	1.7	14
54	Patterns and rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants <i>Blochmannia floridanus</i> . Molecular Ecology, 2008, 17, 4382-4392.	3.9	13

#	Article	IF	Citations
55	Promoter Characterization in the AT-Rich Genome of the Obligate Endosymbiont " <i>Candidatus</i> Blochmannia floridanus― Journal of Bacteriology, 2009, 191, 3747-3751.	2.2	13
56	The genetic structure of populations of Metrioptera bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance. Conservation Genetics, 2013, 14, 299-311.	1.5	13
57	Polyandry in two South American harvester ants. Insectes Sociaux, 2008, 55, 91-97.	1.2	12
58	Speciation in Obligately Plant-Associated Crematogaster Ants: Host Distribution Rather than Adaption Towards Specific Hosts Drives the Process., 2010,, 193-213.		12
59	Taxonomic Revision of the Obligate Plant-Ants of the Genus Crematogaster Lund (Hymenoptera,) Tj ETQq1 1 0.78 Malay Peninsula. Sociobiology, 2016, 63, 651.	4314 rgB7 0.5	Γ/Overlock 12
60	Comparison of fitness effects in the earthworm Eisenia fetida after exposure to single or multiple anthropogenic pollutants. Science of the Total Environment, 2022, 838, 156387.	8.0	12
61	Paternity re-visited in a recovering population of Caribbean leatherback turtles (Dermochelys) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10
62	Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic and Applied Ecology, 2018, 32, 26-38.	2.7	10
63	Challenges and a call to action for protecting European red wood ants. Conservation Biology, 2022, 36, .	4.7	10
64	Biased dispersal of <i>Metrioptera bicolor</i> , a wing dimorphic bushâ€ericket. Insect Science, 2018, 25, 297-308.	3.0	9
65	The effect of ground surface rugosity on ant running speed is species-specific rather than size dependent. Insectes Sociaux, 2019, 66, 355-364.	1.2	9
66	Influence of tree hollow characteristics and forest structure on saproxylic beetle diversity in tree hollows in managed forests in a regional comparison. Ecology and Evolution, 2021, 11, 17973-17999.	1.9	9
67	Characterization of microsatellite markers for plant-ants of the genus Crematogaster subgenus Decacrema. Molecular Ecology Notes, 2004, 4, 409-411.	1.7	8
68	Characterization of microsatellite markers for the invasive ant species Anoplolepis gracilipes. Molecular Ecology Notes, 2006, 6, 912-914.	1.7	8
69	Local differences of thermal preferences in European common frog (Rana temporaria Linnaeus, 1758) tadpoles. Zoologischer Anzeiger, 2017, 268, 47-54.	0.9	8
70	Forest disturbance and salvage logging have neutral long-term effects on drinking water quality but alter biodiversity. Forest Ecology and Management, 2021, 495, 119354.	3.2	8
71	Gene-flow in the clouds: landscape genetics of a viviparous, montane grassland toad in the tropics. Conservation Genetics, 2018, 19, 169-180.	1.5	7
72	Small, specialised and highly mobile? The tree-hole breeding frog, <i>Phrynobatrachus guineensis</i> , lacks fine-scale population structure. African Journal of Herpetology, 2010, 59, 79-94.	0.9	6

#	Article	IF	CITATIONS
73	Do microsporidia function as "biological weapon―for <i>Harmonia axyridis</i> under natural conditions?. Insect Science, 2015, 22, 353-359.	3.0	6
74	Micro-habitat and season dependent impact of the invasive Impatiens glandulifera on native vegetation. NeoBiota, 0, 57, 109-131.	1.0	6
75	In vitro cultivation of primary intestinal cells from Eisenia fetida as basis for ecotoxicological studies. Ecotoxicology, 2022, 31, 221-233.	2.4	6
76	Genetic Relatedness and Chemical Profiles in an Unusually Peaceful Eusocial Bee. Journal of Chemical Ecology, 2011, 37, 1117-1126.	1.8	5
77	Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps. Evolution; International Journal of Organic Evolution, 2017, 71, 2562-2571.	2.3	5
78	Invasive Impatiens glandulifera: A driver of changes in native vegetation?. Ecology and Evolution, 2021, 11, 1320-1333.	1.9	5
79	Genome degeneration affects both extracellular and intracellular bacterial endosymbionts. Journal of Biology, 2009, 8, 31.	2.7	4
80	Windthrow and salvage logging alter \hat{l}^2 -diversity of multiple species groups in a mountain spruce forest. Forest Ecology and Management, 2022, 520, 120401.	3.2	4
81	Multiple paternity in a viviparous toad with internal fertilisation. Die Naturwissenschaften, 2016, 103, 51.	1.6	3
82	Origin, behaviour, and genetics of reproductive workers in an invasive ant. Frontiers in Zoology, 2021, 18, 13.	2.0	3
83	Individual vs. Combined Short-Term Effects of Soil Pollutants on Colony Founding in a Common Ant Species. Frontiers in Insect Science, $2021, 1, .$	2.1	3
84	Comparing a Potential External Immune Defense Trait to Internal Immunity in Females of Wild Bumblebees. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	2
85	The Beauty is a beast: Does leachate from the invasive terrestrial plant <i>Impatiens glandulifera</i> affect aquatic food webs?. Ecology and Evolution, 2022, 12, e8781.	1.9	2
86	Matriline effects on metamorphic traits in a natural system in the European common frog (Rana) Tj ETQq0 0 0 rg	gBT_lOverl	ock 10 Tf 50 2
87	Reduced benefits of ant occupation for ant-trees in oil palm compared with heavily logged forest. Symbiosis, 2020, 81, 79-91.	2.3	1
88	Ant Plants: Macaranga. , 2021, , 41-45.		0
89	Carpenter Ants. , 2021, , 157-161.		0
90	Introduced and Invasive Species. , 2021, , 524-533.		0

#	Article	IF	CITATIONS
91	Carpenter Ants. , 2020, , 1-6.		O
92	Ant Plants, Macaranga. , 2020, , 1-5.		0
93	Introduced and Invasive Species. , 2020, , 1-10.		O