
Yevgeny Brudno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 2009, 324, 930-935.	6.0	4,989
2	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	13.7	738
3	Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials, 2013, 34, 9201-9209.	5.7	165
4	DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes. Journal of the American Chemical Society, 2008, 130, 4646-4659.	6.6	149
5	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	5.7	140
6	On-demand drug delivery from local depots. Journal of Controlled Release, 2015, 219, 8-17.	4.8	123
7	Recent Progress Toward the Templated Synthesis and Directed Evolution of Sequence-Defined Synthetic Polymers. Chemistry and Biology, 2009, 16, 265-276.	6.2	95
8	Plateletâ€Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury. Advanced Functional Materials, 2019, 29, 1803567.	7.8	92
9	An in vitro translation, selection and amplification system for peptide nucleic acids. Nature Chemical Biology, 2010, 6, 148-155.	3.9	85
10	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	3.3	84
11	Sustained Delivery of VEGF Maintains Innervation and Promotes Reperfusion in Ischemic Skeletal Muscles Via NGF/GDNF Signaling. Molecular Therapy, 2014, 22, 1243-1253.	3.7	77
12	Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic <i>In Vivo</i> Features of Chronic Wounds. Tissue Engineering - Part C: Methods, 2015, 21, 499-508.	1.1	69
13	Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nature Biotechnology, 2022, 40, 1250-1258.	9.4	63
14	Replenishable drug depot to combat post-resection cancer recurrence. Biomaterials, 2018, 178, 373-382.	5.7	40
15	In Vivo Targeting through Click Chemistry. ChemMedChem, 2015, 10, 617-620.	1.6	28
16	Click cross-linking improves retention and targeting of refillable alginate depots. Acta Biomaterialia, 2020, 112, 112-121.	4.1	25
17	Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo. PLoS ONE, 2013, 8, e83755.	1.1	24
18	Clickable, acid labile immunosuppressive prodrugs for <i>in vivo</i> targeting. Biomaterials Science, 2020, 8, 266-277.	2.6	16

Yevgeny Brudno

#	Article	lF	CITATIONS
19	Scaffoldâ€Mediated Static Transduction of T Cells for CARâ€T Cell Therapy. Advanced Healthcare Materials, 2020, 9, e2000275.	3.9	15
20	<i>In Vivo</i> Targeting Using Arylboronate/Nopoldiol Click Conjugation. Bioconjugate Chemistry, 2020, 31, 2288-2292.	1.8	7
21	Extracellular-Matrix-Anchored Click Motifs for Specific Tissue Targeting. Molecular Pharmaceutics, 2019, 17, 392-403.	2.3	5
22	On-Demand Drug Release from Click-Refillable Drug Depots. Molecular Pharmaceutics, 2021, 18, 3920-3925.	2.3	5
23	Tissue-reactive drugs enable materials-free local depots. Journal of Controlled Release, 2022, 343, 142-151.	4.8	3
24	Regenerating Antithrombotic Surfaces through Nucleic Acid Displacement. ACS Biomaterials Science and Engineering, 2020, 6, 2159-2166.	2.6	2
25	Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture. Acta Biomaterialia, 2021, 138, 208-208.	4.1	2
26	Pro-angiogenic factors enhance pericyte function during angiogenesis. , 2014, , .		0