Liliane Michalik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	7.1	869
2	Transcriptional Regulation of Metabolism. Physiological Reviews, 2006, 86, 465-514.	13.1	749
3	From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 2006, 45, 120-159.	5.3	656
4	Antiapoptotic Role of PPARβ in Keratinocytes via Transcriptional Control of the Akt1 Signaling Pathway. Molecular Cell, 2002, 10, 721-733.	4.5	635
5	Peroxisome-proliferator-activated receptors and cancers: complex stories. Nature Reviews Cancer, 2004, 4, 61-70.	12.8	552
6	PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology and Metabolism, 2012, 23, 351-363.	3.1	537
7	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology, 2001, 142, 4195-4202.	1.4	433
8	Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice. Journal of Cell Biology, 2001, 154, 799-814.	2.3	388
9	Critical roles of PPARbeta /delta in keratinocyte response to inflammation. Genes and Development, 2001, 15, 3263-3277.	2.7	373
10	Reciprocal Regulation of Brain and Muscle Arnt-Like Protein 1 and Peroxisome Proliferator-Activated Receptor α Defines a Novel Positive Feedback Loop in the Rodent Liver Circadian Clock. Molecular Endocrinology, 2006, 20, 1715-1727.	3.7	317
11	A New Selective Peroxisome Proliferator-Activated Receptor Î ³ Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology, 2002, 16, 2628-2644.	3.7	201
12	Be Fit or Be Sick: Peroxisome Proliferator-Activated Receptors Are Down the Road. Molecular Endocrinology, 2004, 18, 1321-1332.	3.7	196
13	Involvement of PPAR nuclear receptors in tissue injury and wound repair. Journal of Clinical Investigation, 2006, 116, 598-606.	3.9	192
14	Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Current Opinion in Biotechnology, 1999, 10, 564-570.	3.3	184
15	Peroxisome-Proliferator-Activated Receptor (PPAR)-Î ³ Activation Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 2004, 123, 305-312.	0.3	175
16	PPARs in Diseases: Control Mechanisms of Inflammation. Current Medicinal Chemistry, 2005, 12, 2995-3009.	1.2	168
17	Peroxisome proliferator-activated receptor ?/? activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovascular Research, 2005, 65, 832-841.	1.8	154
18	Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 991-998.	1.2	153

#	Article	IF	CITATIONS
19	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology, 2001, 142, 4195-4202.	1.4	135
20	Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism. PLoS ONE, 2011, 6, e14665.	1.1	128
21	Peroxisome proliferator-activated receptor-β signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology, 2003, 124, 184-201.	0.6	120
22	Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 99-105.	1.2	119
23	PPAR expression and function during vertebrate development. International Journal of Developmental Biology, 2002, 46, 105-14.	0.3	117
24	Sex Difference in Hepatic Peroxisome Proliferator-Activated Receptor α Expression: Influence of Pituitary and Gonadal Hormones. Endocrinology, 2003, 144, 101-109.	1.4	113
25	Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2. Diabetes, 2008, 57, 2149-2157.	0.3	108
26	PPARs as Drug Targets to Modulate Inflammatory Responses?. Inflammation and Allergy: Drug Targets, 2004, 3, 361-375.	3.1	102
27	Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ∫δ is essential for skin homeostasis and wound healing. Journal of Cell Biology, 2009, 184, 817-831.	2.3	97
28	PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Research, 2008, 2008, 1-15.	1.1	91
29	Pancreatic Islet Adaptation to Fasting Is Dependent on Peroxisome Proliferator-Activated Receptor α Transcriptional Up-Regulation of Fatty Acid Oxidation. Endocrinology, 2005, 146, 375-382.	1.4	89
30	PPARβ∫δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2014, 57, 2126-2135.	2.9	83
31	Essential role of Smad3 in the inhibition of inflammation-induced PPARβ/δ expression. EMBO Journal, 2004, 23, 4211-4221.	3.5	75
32	The anti-apoptotic role of PPARÎ ² contributes to efficient skin wound healing. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 257-265.	1.2	66
33	PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 59-67.	1.2	66
34	Activation of Peroxisome Proliferator–Activated Receptor-β/-Î′ (PPAR-β/-Î) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6–Stimulated Adipocytes. Diabetes, 2011, 60, 1990-1999.	0.3	64
35	Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. Journal of Investigative Dermatology, 2018, 138, 500-510.	0.3	63
36	Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Current Opinion in Cell Biology, 2005, 17, 216-222.	2.6	61

#	Article	IF	CITATIONS
37	The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor β/δ Potentiates Cell Chemotactism, Polarization, and Migration. Molecular and Cellular Biology, 2007, 27, 7161-7175.	1.1	60
38	PPARÎ ² regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation. Journal of Lipid Research, 2003, 44, 280-295.	2.0	58
39	PPARβ/δ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. International Journal of Cardiology, 2014, 174, 110-118.	0.8	58
40	Epithelium-Mesenchyme Interactions Control the Activity of Peroxisome Proliferator-Activated Receptor β/δduring Hair Follicle Development. Molecular and Cellular Biology, 2005, 25, 1696-1712.	1.1	57
41	Impaired expression of NADH dehydrogenase subunit 1 and PPARÎ ³ coactivator-1 in skeletal muscle of ZDF rats. Journal of Lipid Research, 2004, 45, 113-123.	2.0	55
42	Functions of the Peroxisome Proliferator-Activated Receptor (PPAR) α and β in Skin Homeostasis, Epithelial Repair, and Morphogenesis. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 30-35.	0.8	51
43	Peroxisome proliferator-activated receptors \hat{l}^2/\hat{l} : emerging roles for a previously neglected third family member. Current Opinion in Lipidology, 2003, 14, 129-135.	1.2	50
44	Src is activated by the nuclear receptor peroxisome proliferatorâ€activated receptor β/δ in ultraviolet radiationâ€induced skin cancer. EMBO Molecular Medicine, 2014, 6, 80-98.	3.3	50
45	New insights into the role of PPARs. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 235-243.	1.0	49
46	Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis. Lipids, 2004, 39, 1093-1099.	0.7	47
47	Nuclear Factor I-C Links Platelet-Derived Growth Factor and Transforming Growth Factor β1 Signaling to Skin Wound Healing Progression. Molecular and Cellular Biology, 2009, 29, 6006-6017.	1.1	47
48	PPARÉ£ drives IL-33-dependent ILC2 pro-tumoral functions. Nature Communications, 2021, 12, 2538.	5.8	44
49	Transcriptional Repression of Peroxisome Proliferator-activated Receptor β/δ in Murine Keratinocytes by CCAAT/Enhancer-binding Proteins*. Journal of Biological Chemistry, 2005, 280, 38700-38710.	1.6	42
50	Identification of a novel <scp>PPAR</scp> β/Î′/miRâ€21â€3p axis in <scp>UV</scp> â€induced skin inflammation EMBO Molecular Medicine, 2016, 8, 919-936.	[.] 3.3	41
51	Peroxisome proliferator-activated receptor-β as a target for wound healing drugs. Expert Opinion on Therapeutic Targets, 2004, 8, 39-48.	1.5	40
52	Lack of hypotriglyceridemic effect of gemfibrozil as a consequence of age-related changes in rat liver PPARα. Biochemical Pharmacology, 2004, 67, 157-166.	2.0	40
53	Guiding Ligands to Nuclear Receptors. Cell, 2007, 129, 649-651.	13.5	38
54	Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1241-1248.	1.8	37

#	Article	IF	CITATIONS
55	Genetic- or Transforming Growth Factor-β1-induced Changes in Epidermal Peroxisome Proliferator-activated Receptor β/δExpression Dictate Wound Repair Kinetics. Journal of Biological Chemistry, 2005, 280, 18163-18170.	1.6	36
56	Altered Growth in Male Peroxisome Proliferator-Activated Receptor γ (PPARγ) Heterozygous Mice: Involvement of PPARγ in a Negative Feedback Regulation of Growth Hormone Action. Molecular Endocrinology, 2004, 18, 2363-2377.	3.7	35
57	Peroxisome Proliferator-Activated Receptor (PPAR)-?? as a Target for Wound Healing Drugs. American Journal of Clinical Dermatology, 2003, 4, 523-530.	3.3	33
58	Combined Simulation and Mutagenesis Analyses Reveal the Involvement of Key Residues for Peroxisome Proliferator-activated Receptorα Helix 12 Dynamic Behavior. Journal of Biological Chemistry, 2007, 282, 9666-9677.	1.6	33
59	Selective Expression of a Dominant-Negative Form of Peroxisome Proliferator-Activated Receptor in Keratinocytes Leads to Impaired Epidermal Healing. Molecular Endocrinology, 2005, 19, 2335-2348.	3.7	30
60	Promoter Rearrangements Cause Species-specific Hepatic Regulation of the Glyoxylate Reductase/Hydroxypyruvate Reductase Gene by the Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2005, 280, 24143-24152.	1.6	21
61	Induction of Paracrine Signaling in Metastatic Melanoma Cells by PPARÎ ³ Agonist Rosiglitazone Activates Stromal Cells and Enhances Tumor Growth. Cancer Research, 2018, 78, 6447-6461.	0.4	18
62	Decreased expression of peroxisome proliferator-activated receptor \hat{I}_{\pm} and liver fatty acid binding protein after partial hepatectomy of rats and mice. Liver International, 2005, 25, 33-40.	1.9	16
63	Low expression of the PPARÎ ³ -regulated gene thioredoxin-interacting protein accompanies human melanoma progression and promotes experimental lung metastases. Scientific Reports, 2021, 11, 7847.	1.6	12
64	Nuclear Hormone Receptors and Mouse Skin Homeostasis: Implication of PPARÎ ² . Hormone Research in Paediatrics, 2000, 54, 263-268.	0.8	10
65	Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. Journal of Allergy and Clinical Immunology, 2015, 135, 1625-1635.e5.	1.5	9
66	Characterization of a 67 kDa microtubule-binding protein in the pancreas from different species. Biochimica Et Biophysica Acta - General Subjects, 1992, 1116, 269-273.	1.1	8
67	Biochemical and immunochemical identification of a microtubule-binding protein from bovine pancreas. Cytoskeleton, 1993, 25, 381-390.	4.4	8
68	Physiological ligands of PPARs in inflammation and lipid homeostasis. Future Lipidology, 2006, 1, 191-201.	0.5	8
69	Identification of a microtubule-binding domain sequence in pancreatic messenger RNAs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 317-320.	1.8	5
70	PPARs in fetal and early postnatal development. Advances in Developmental Biology (Amsterdam,) Tj ETQqO 0 0	rgBT/Ove	rlo ₄ k 10 Tf 50
71	Peroxisome proliferator-activated receptor-? as a target for wound healing drugs. Expert Opinion on Therapeutic Targets, 2004, 8, 39-48.	1.5	4

Roles of the peroxisome proliferator-activated receptor (PPAR) \hat{l}_{\pm} and \hat{l}_{2}/\hat{l}_{i} in skin wound healing. 0.2 2 International Congress Series, 2007, 1302, 45-52.

#	Article	IF	CITATIONS
73	The Janus face of rosiglitazone. Oncotarget, 2018, 9, 37614-37615.	0.8	2
74	PPARs: Nuclear Hormone Receptors Involved in the Control of Inflammation. , 0, , 419-435.		1
75	Peroxisome Proliferator Activated Receptors. , 2005, , 267-280.		0
76	PPARs: Lipid Sensors that Regulate Cell Differentiation Processes. , 2006, , 117-131.		0
77	La activación de receptor activado por proliferadores peroxisómicos β/Î′ mejora la resistencia a insulina inducida por IL-6 en c©lulas hepáticas. ClÃnica E Investigación En Arteriosclerosis, 2012, 24, 275-283. 	0.4	0
78	Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ/Î′ is essential for skin homeostasis and wound healing. Journal of Experimental Medicine, 2009, 206, i6-i6.	4.2	0