Miller Alonso Camargo-Valero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599368/publications.pdf

Version: 2024-02-01

53 papers 1,800 citations

331259 21 h-index 276539 41 g-index

54 all docs

54 docs citations

54 times ranked 2123 citing authors

#	Article	lF	CITATIONS
1	Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality. Energies, 2022, 15, 1418.	1.6	12
2	Ammonia and Biogas from Anaerobic and Sewage Digestion for Novel Heat, Power and Transport Applications—A Techno-Economic and GHG Emissions Study for the United Kingdom. Energies, 2022, 15, 2174.	1.6	2
3	Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass. Energies, 2022, 15, 3495.	1.6	6
4	The top 100 global water questions: Results of a scoping exercise. One Earth, 2022, 5, 563-573.	3.6	15
5	Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renewable Energy, 2021, 167, 473-483.	4.3	57
6	Fate of faecal pathogen indicators during faecal sludge composting with different bulking agents in tropical climate. International Journal of Hygiene and Environmental Health, 2021, 232, 113670.	2.1	31
7	Enhancing bioenergy production from food waste by in situ biomethanation: Effect of the hydrogen injection point. Food and Energy Security, 2021, 10, e288.	2.0	5
8	Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis. Waste Management, 2021, 130, 12-22.	3.7	9
9	Influence of pH and Temperature on Struvite Purity and Recovery from Anaerobic Digestate. Sustainability, 2021, 13, 10730.	1.6	23
10	Towards resolving the phosphorus chaos created by food systems. Ambio, 2020, 49, 1076-1089.	2.8	41
11	Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste. Renewable Energy, 2020, 151, 311-321.	4.3	26
12	Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. Frontiers in Plant Science, 2020, $11,982$.	1.7	24
13	An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth. Energies, 2020, 13, 5983.	1.6	23
14	A Simple and Non-destructive Method for Chlorophyll Quantification of Chlamydomonas Cultures Using Digital Image Analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 746.	2.0	14
15	Hydrogen <i>via</i> reforming aqueous ammonia and biomethane co-products of wastewater treatment: environmental and economic sustainability. Sustainable Energy and Fuels, 2020, 4, 5835-5850.	2.5	9
16	Modelling Mechanically Induced Non-Newtonian Flows to Improve the Energy Efficiency of Anaerobic Digesters. Water (Switzerland), 2020, 12, 2995.	1.2	3
17	Uncoupling growth from phosphorus uptake in <i>Lemna</i> : Implications for use of duckweed in wastewater remediation and P recovery in temperate climates. Food and Energy Security, 2020, 9, e244.	2.0	12
18	An assessment of road-verge grass as a feedstock for farm-fed anaerobic digestion plants. Biomass and Bioenergy, 2020, 138, 105570.	2.9	17

2

#	Article	lF	CITATIONS
19	Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion. Bioresource Technology, 2020, 312, 123539.	4.8	35
20	Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renewable Energy, 2020, 157, 959-973.	4.3	91
21	Five pillars for stakeholder analyses in sustainability transformations: The global case of phosphorus. Environmental Science and Policy, 2020, 107, 80-89.	2.4	30
22	Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis. Applied Energy, 2019, 254, 113629.	5.1	35
23	Preparation of functionalized magnetic nanoparticles conjugated with feroxamine and their evaluation for pathogen detection. RSC Advances, 2019, 9, 13533-13542.	1.7	9
24	Performance of Anaerobic Baffled Reactor for Decentralized Wastewater Treatment in Urban Malang, Indonesia. Processes, 2019, 7, 184.	1.3	21
25	Combined ammonia recovery and solid oxide fuel cell use at wastewater treatment plants for energy and greenhouse gas emission improvements. Applied Energy, 2019, 240, 698-708.	5.1	26
26	Effect of the stirring speed on the struvite formation using the centrate from a WWTP. Revista Facultad De IngenierÃa, 2019, , 42-50.	0.5	7
27	Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. Science of the Total Environment, 2018, 616-617, 345-354.	3.9	25
28	Take it away: the need for designing fecal sludge disposal services for single-pit latrines. Journal of Water Sanitation and Hygiene for Development, 2017, 7, 121-128.	0.7	8
29	Algal Research, Special Issue Editorial: Wastewater and Algae; Risk, biofuels and long-term sustainability. Algal Research, 2017, 24, A1.	2.4	4
30	Note to Editor: Microalgae cultivation for wastewater treatment and biofuel production: a bibliographic overview of past and current trends. Algal Research, 2017, 24, A2-A7.	2.4	11
31	Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Applied Energy, 2017, 208, 1357-1369.	5.1	140
32	An Effective Surrogate Tracer Technique for S. aureus Bioaerosols in a Mechanically Ventilated Hospital Room Replica Using Dilute Aqueous Lithium Chloride. Atmosphere, 2017, 8, 238.	1.0	6
33	Towards sustainable sanitation management: Establishing the costs and willingness to pay for emptying and transporting sludge in rural districts with high rates of access to latrines. PLoS ONE, 2017, 12, e0171735.	1.1	22
34	Understanding the drivers of sanitation behaviour in riverine communities of Niger Delta, Nigeria: the case of Odi and Kaiama communities. Journal of Water Sanitation and Hygiene for Development, 2016, 6, 491-499.	0.7	6
35	Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management. Water Science and Technology, 2016, 74, 2795-2806.	1.2	14
36	Pump it up: making single-pit emptying safer in rural Bangladesh. Journal of Water Sanitation and Hygiene for Development, 2016, 6, 456-464.	0.7	13

#	Article	IF	CITATIONS
37	Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water. Bioresource Technology, 2016, 214, 637-644.	4.8	163
38	New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 2016, 206, 264-274.	4.8	107
39	A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresource Technology, 2016, 200, 951-960.	4.8	186
40	Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Applied Geography, 2015, 65, 49-57.	1.7	76
41	Integrating microalgae into the Brazilian program for biodiesel production and use. Biofuels, 2014, 5, 45-52.	1.4	3
42	An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels, 2014, 5, 331-349.	1.4	100
43	Measurement of ventilation and airborne infection risk in large naturally ventilated hospital wards. Building and Environment, 2013, 65, 35-48.	3.0	67
44	Bioaerosol deposition in single and two-bed hospital rooms: A numerical and experimental study. Building and Environment, 2013, 59, 436-447.	3.0	79
45	The Effects of Hydraulic and Organic Loadings on the Performance of a Full-Scale Facultative Pond in a Temperate Climate Region (Argentine Patagonia). Water, Air, and Soil Pollution, 2012, 223, 2483-2493.	1.1	30
46	Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass. Water Science and Technology, 2010, 61, 1027-1034.	1.2	19
47	Nitrification–denitrification in waste stabilisation ponds: a mechanism for permanent nitrogen removal in maturation ponds. Water Science and Technology, 2010, 61, 1137-1146.	1.2	28
48	Ammonia volatilisation in waste stabilisation ponds: a cascade of misinterpretations?. Water Science and Technology, 2010, 61, 555-561.	1.2	18
49	The influence of algal biomass on tracer experiments in maturation ponds. Desalination and Water Treatment, 2009, 4, 89-92.	1.0	5
50	Enhanced phosphorus removal in a waste stabilization pond system with blast furnace slag filters. Desalination and Water Treatment, 2009, 4, 122-127.	1.0	15
51	Maturation ponds, rock filters and reedbeds in the UK: statistical analysis of winter performance. Water Science and Technology, 2007, 55, 135-142.	1.2	9
52	Nitrogen removal via ammonia volatilization in maturation ponds. Water Science and Technology, 2007, 55, 87-92.	1.2	48
53	Nitrogen removal in maturation ponds: tracer experiments with 15N-labelled ammonia. Water Science and Technology, 2007, 55, 81-85.	1.2	15