Clemens Simbrunner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8599174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxial Metal Halide Perovskites by Inkjetâ€Printing on Various Substrates. Advanced Functional Materials, 2020, 30, 2004612.	14.9	21
2	Indexing of grazing-incidence X-ray diffraction patterns: the case of fibre-textured thin films. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 373-387.	0.1	19
3	Crystal alignment of caffeine deposited onto single crystal surfaces via hot-wall epitaxy. CrystEngComm, 2017, 19, 2936-2945.	2.6	4
4	Surface-Induced Phase of Tyrian Purple (6,6′-Dibromoindigo): Thin Film Formation and Stability. Crystal Growth and Design, 2016, 16, 3647-3655.	3.0	15
5	Multiple scattering in grazing-incidence X-rayÂdiffraction: impact on lattice-constant determinationÂin thin films. Journal of Synchrotron Radiation, 2016, 23, 729-734.	2.4	31
6	Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers. Journal of Physical Chemistry C, 2015, 119, 15689-15697.	3.1	12
7	Grain Size and Interface Dependence of Bias Stress Stability of n-Type Organic Field Effect Transistors. ACS Applied Materials & Interfaces, 2015, 7, 22380-22384.	8.0	14
8	Complex Behavior of Caffeine Crystallites on Muscovite Mica Surfaces. Crystal Growth and Design, 2015, 15, 4563-4570.	3.0	10
9	Organic van der Waals Epitaxy versus Templated Growth by Organic–Organic Heteroepitaxy. , 2015, , 483-508.		9
10	Impact of morphology on charge carrier mobility in top gate C <inf>60</inf> organic field effect transistors. , 2014, , .		0
11	Motionless system to measure relative angular emission intensity of decaying or modulated light emitting diodes. Review of Scientific Instruments, 2014, 85, 103103.	1.3	0
12	The role of metal contacts in the stability of n-type organic field effect transistors. Applied Physics A: Materials Science and Processing, 2014, 117, 2235-2240.	2.3	6
13	Multiband Laser Action from Organic-Organic Heteroepitaxial Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1632, 1.	0.1	0
14	Photosensitivity of top gate C60 based OFETs: Potential applications for high efficiency organic photodetector. Organic Electronics, 2014, 15, 175-181.	2.6	25
15	Crystal structure determination of organic thin-films: the example of 2,2′ :6′,2″-ternaphthalene. Zeitschrift Fur Kristallographie - Crystalline Materials, 2014, 229, .	0.8	8
16	Air stability of C60 based n-type OFETs. Synthetic Metals, 2014, 188, 136-139.	3.9	15
17	Heteroepitaxy of Organic Nanofibers: Example of Ternaphthalene on <i>p</i> -Hexaphenyl. Crystal Growth and Design, 2014, 14, 5719-5728.	3.0	7
18	Stability of low voltage n-type organic field effect transistors. Synthetic Metals, 2014, 197, 18-22.	3.9	2

CLEMENS SIMBRUNNER

#	Article	IF	CITATIONS
19	The Epitaxial Growth of Self-Assembled Ternaphthalene Fibers on Muscovite Mica. Crystal Growth and Design, 2014, 14, 442-449.	3.0	12
20	Ameliorating the bias stress stability of n-type OFETs. Organic Electronics, 2014, 15, 3203-3210.	2.6	11
21	Non-doped, blue-emitting, color-stable, organic light-emitting diode based on 2,2′:6′,2″-ternaphthalene. Applied Physics A: Materials Science and Processing, 2014, 115, 731-735.	2.3	5
22	Geometrical Structure and Interface Dependence of Bias Stress Induced Threshold Voltage Shift in C60-Based OFETs. ACS Applied Materials & Interfaces, 2014, 6, 15148-15153.	8.0	13
23	Organic surface-grown nanowires for functional devices. Reports on Progress in Physics, 2013, 76, 126502.	20.1	27
24	Extending the Lasing Wavelength Coverage of Organic Semiconductor Nanofibers by Periodic Organic–Organic Heteroepitaxy. Advanced Optical Materials, 2013, 1, 117-122.	7.3	23
25	Organic Nanofibers: Extending the Lasing Wavelength Coverage of Organic Semiconductor Nanofibers by Periodic Organic–Organic Heteroepitaxy (Advanced Optical Materials 2/2013). Advanced Optical Materials, 2013, 1, 116-116.	7.3	0
26	Organic–Organic Heteroepitaxy—The Method of Choice to Tune Optical Emission of Organic Nano-fibers?. Springer Series in Materials Science, 2013, , 49-78.	0.6	0
27	Morphological and Structural Investigation of Sexithiophene Growth on KCl (100). Crystal Growth and Design, 2013, 13, 536-542.	3.0	21
28	Interface Properties of Organic <i>para</i> -Hexaphenyl/α-Sexithiophene Heterostructures Deposited on Highly Oriented Pyrolytic Graphite. Langmuir, 2013, 29, 14444-14450.	3.5	8
29	Epitaxial growth of sexi-thiophene and para-hexaphenyl and its implications for the fabrication of self-assembled lasing nano-fibres. Semiconductor Science and Technology, 2013, 28, 053001.	2.0	58
30	Anisotropic Strain Effect on Electron Transport in C60 Organic Field Effect transistors. Materials Research Society Symposia Proceedings, 2013, 1501, 1.	0.1	3
31	Morphological and structural investigation of $\hat{I}\pm$ -sexithiophene grown on KCl (100). , 2013, , .		1
32	White fluorescent nano-fibers prepared by periodic organic hetero-epitaxy. Proceedings of SPIE, 2013, ,	0.8	1
33	Strain induced anisotropic effect on electron mobility in C60 based organic field effect transistors. Applied Physics Letters, 2012, 101, 083305.	3.3	44
34	UV-induced modulation of the conductivity of polyaniline: towards a photo-patternable charge injection layer for structured organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 2922-2928.	6.7	29
35	Alternately deposited heterostructures of α-sexithiophene–para-hexaphenyl on muscovite mica(001) surfaces: crystallographic structure and morphology. Journal of Materials Chemistry, 2012, 22, 15316.	6.7	15
36	Color Tuning of Nanofibers by Periodic Organic–Organic Hetero-Epitaxy. ACS Nano, 2012, 6, 4629-4638.	14.6	35

#	Article	IF	CITATIONS
37	Reproducibility and stability of C60 based organic field effect transistor. Synthetic Metals, 2012, 161, 2562-2565.	3.9	13
38	Photo-Fries-based photosensitive polymeric interlayers for patterned organic devices. Applied Physics A: Materials Science and Processing, 2012, 107, 985-993.	2.3	9
39	Epitaxy of Rodlike Organic Molecules on Sheet Silicates—A Growth Model Based on Experiments and Simulations. Journal of the American Chemical Society, 2011, 133, 3056-3062.	13.7	61
40	Electric field and grain size dependence of Meyer–Neldel energy in C60 films. Synthetic Metals, 2011, 161, 1987-1990.	3.9	8
41	Comparative study of bulk and interface transport in disordered fullerene films. Physica Status Solidi (B): Basic Research, 2011, 248, 2656-2659.	1.5	10
42	Meyer–Neldel rule for charge carrier transport in fullerene devices: A comparative study. Organic Electronics, 2011, 12, 161-168.	2.6	42
43	Epitaxial growth of sexithiophene on mica surfaces. Physical Review B, 2011, 83, .	3.2	35
44	Effect of source-drain electric field on the Meyer–Neldel energy in organic field effect transistors. Applied Physics Letters, 2011, 98, 223301.	3.3	19
45	Structural Evolution of Sputtered Indium Oxide Thin Films. Journal of Electrical Engineering, 2010, 61, 382-385.	0.7	14
46	Quantitative luminous efficiency determination for large-area light-emitting devices. Applied Physics A: Materials Science and Processing, 2010, 98, 337-344.	2.3	2
47	Effect of Film Morphology on Charge Transport in C ₆₀ -based Organic Field Effect Transistors. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	2
48	Dependence of Meyer–Neldel energy on energetic disorder in organic field effect transistors. Applied Physics Letters, 2010, 96, 213306.	3.3	41
49	Organicâ^'Organic Heteroepitaxy of Red-, Green-, and Blue-Emitting Nanofibers. ACS Nano, 2010, 4, 6244-6250.	14.6	42
50	Growth and optical properties of α-sexithiopene doped para-sexiphenyl nanofibers. Applied Physics Letters, 2009, 95, 013306.	3.3	10
51	Para-sexiphenyl-CdSe/ZnS nanocrystal hybrid light emitting diodes. Applied Physics Letters, 2009, 94, .	3.3	19
52	Para-sexiphenyl-CdSe Nanocrystals Hybrid Light Emitting Diodes with Optimized Layer Thickness and Interfaces. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
53	Modification of para-sexiphenyl layer growth by UV induced polarity changes of polymeric substrates. Organic Electronics, 2009, 10, 326-332.	2.6	14
54	Para-Sexiphenyl Layers Grown On Light Sensitive Polymer Substrates. Springer Proceedings in Physics, 2009, , 23-27.	0.2	0

CLEMENS SIMBRUNNER

#	Article	IF	CITATIONS
55	Investigation of NiO x -based contacts on p-GaN. Journal of Materials Science: Materials in Electronics, 2008, 19, 855-862.	2.2	14
56	GaN:-Mg grown by MOVPE: Structural properties and their effect on the electronic and optical behavior. Journal of Crystal Growth, 2008, 310, 13-21.	1.5	22
57	In situ monitoring of periodic structures during MOVPE of III-nitrides. Journal of Crystal Growth, 2008, 310, 1607-1613.	1.5	2
58	Fe onto GaN(0001) grown in a full MOVPE process. Journal of Crystal Growth, 2008, 310, 1772-1776.	1.5	3
59	Phase-dependent distribution of Fe-rich nanocrystals in MOVPE-grown (Ga,Fe)N. Journal of Crystal Growth, 2008, 310, 3294-3298.	1.5	13
60	Periodic Mg distribution in GaN:δ-Mg and the effect of annealing on structural and optical properties. Applied Surface Science, 2008, 255, 731-733.	6.1	5
61	Microstructure of (Ga,Fe)N Films Grown by Metal-Organic Chemical Vapour Deposition. Springer Proceedings in Physics, 2008, , 77-80.	0.2	Ο
62	On the effect of periodic Mg distribution in GaN:δ-Mg. Applied Physics Letters, 2007, 90, 142108.	3.3	18
63	Fourier analysis applied on in situ laser reflectometry during III-nitride metal organic chemical vapor deposition growth. Journal of Applied Physics, 2007, 101, 093501.	2.5	3
64	ParamagneticGaN:Feand ferromagnetic(Ga,Fe)N: The relationship between structural, electronic, and magnetic properties. Physical Review B, 2007, 75, .	3.2	109
65	In situ X-ray diffraction during MOCVD of III-nitrides: An optimized wobbling compensating evaluation algorithm. Journal of Crystal Growth, 2007, 298, 243-245.	1.5	6
66	In situ growth observation of GaN/AlGaN superlattice structures by simultaneous X-ray diffraction and ellipsometry. Journal of Crystal Growth, 2007, 308, 258-262.	1.5	5
67	Photoluminescence and Hall studies of GaN:Fe and (Ga,Fe)N:Mg layers. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 86-91.	1.8	2
68	<i>In situ</i> Xâ€ray diffraction during MOCVD of Illâ€nitrides. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2798-2803.	1.8	3
69	In-situ and real-time monitoring of MOCVD growth of III-nitrides by simultaneous multi-wavelength-ellipsometry and X-ray-diffraction. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1704-1707.	1.8	10
70	Doping of GaN with Fe and Mg for spintronics applications. Physica Status Solidi (B): Basic Research, 2006, 243, 1701-1705.	1.5	19
71	Magnetic properties of a new spintronic material—GaN:Fe. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 126, 222-225.	3.5	28
72	X-ray diffractometer forin-situandreal-timemonitoring of MOCVD. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c62-c62.	0.3	0