MarÃ-a Teresa Cervera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 2013, 3, 399-415.	0.8	271
2	Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics, 2002, 268, 543-552.	1.0	250
3	"Contrasting Patterns of Selection at Pinus pinaster Ait. Drought Stress Candidate Genes as Revealed by Genetic Differentiation Analyses". Molecular Biology and Evolution, 2008, 25, 417-437.	3.5	198
4	Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theoretical and Applied Genetics, 1998, 97, 51-59.	1.8	164
5	Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics, 2004, 109, 1204-1214.	1.8	153
6	A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49, 1572-1585.	0.9	139
7	Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theoretical and Applied Genetics, 1996, 93-93, 733-737.	1.8	118
8	<i>De novo</i> assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal, 2014, 12, 286-299.	4.1	115
9	3'-Terminal sequence of the plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. Journal of General Virology, 1993, 74, 329-334.	1.3	111
10	Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theoretical and Applied Genetics, 2005, 111, 1440-1456.	1.8	103
11	Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of General Virology, 2000, 81, 557-566.	1.3	95
12	DNA methylation increases throughout Arabidopsis development. Planta, 2005, 222, 301-306.	1.6	93
13	Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80, 555-569.	2.0	91
14	Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L. PLoS ONE, 2014, 9, e103145.	1.1	77
15	Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theoretical and Applied Genetics, 2002, 104, 1290-1297.	1.8	76
16	Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biology and Evolution, 2017, 9, 1130-1147.	1.1	75
17	English elm is a 2,000-year-old Roman clone. Nature, 2004, 431, 1053-1053.	13.7	74
18	A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and Applied Genetics, 2000, 100, 39-48.	1.8	67

#	Article	IF	CITATIONS
19	Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 2011, 12, 368.	1.2	66
20	Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics, 2014, 15, 464.	1.2	64
21	Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theoretical and Applied Genetics, 2004, 109, 103-111.	1.8	60
22	EuroPineDB: a high-coverage web database for maritime pine transcriptome. BMC Genomics, 2011, 12, 366.	1.2	59
23	In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?. PLoS ONE, 2010, 5, e11034.	1.1	52
24	Processing of the plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. Journal of General Virology, 1995, 76, 951-956.	1.3	50
25	Organ-specific metabolic responses to drought in Pinus pinaster Ait Plant Physiology and Biochemistry, 2016, 102, 17-26.	2.8	47
26	Proteolytic processing of the plum pox potyvirus polyprotein by the Nla protease at a novel cleavage site. Virology, 1992, 188, 697-703.	1.1	43
27	Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought. Tree Physiology, 2012, 32, 94-103.	1.4	43
28	Identification of Plum pox virus Determinants Implicated in Specific Interactions with Different Prunus spp Phytopathology, 2001, 91, 159-164.	1.1	41
29	Genetic stability analysis of chrysanthemum (Chrysanthemum x morifolium Ramat) after different stages of an encapsulation–dehydration cryopreservation protocol. Journal of Plant Physiology, 2011, 168, 158-166.	1.6	40
30	Leaf metabolic response to water deficit in Pinus pinaster Ait. relies upon ontogeny and genotype. Environmental and Experimental Botany, 2017, 140, 41-55.	2.0	39
31	Properties of the active plum pox potyvirus RNA polymerase complex in defined glycerol gradient fractions. Virus Research, 1995, 37, 127-137.	1.1	37
32	Inter-clonal variation in functional traits in response to drought for a genetically homogeneous Mediterranean conifer. Environmental and Experimental Botany, 2011, 70, 104-109.	2.0	37
33	Characterisation of Iberian pig genotypes using AFLP markers. Animal Genetics, 2000, 31, 117-122.	0.6	33
34	Mutational Analysis of Plum Pox Potyvirus Polyprotein Processing By the NIa Protease in Escherichia Coli. Journal of General Virology, 1990, 71, 2773-2779.	1.3	31
35	Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta, 2012, 236, 1863-1874.	1.6	30
36	Plum pox potyvirus resistance associated to transgene silencing that can be stabilized after different number of plant generations. Gene, 1998, 206, 263-272.	1.0	29

#	Article	IF	CITATIONS
37	Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall Molecular Ecology Notes, 2004, 4, 731-732.	1.7	29
38	Application of AFLPâ,,¢-based molecular markers to breeding of Populus spp Plant Growth Regulation, 1996, 20, 47-52.	1.8	28
39	Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiology and Biochemistry, 2012, 50, 44-53.	2.8	28
40	Molecular response to water stress in two contrasting Mediterranean pines (PinusÂpinaster and Pinus) Tj ETQq	0 0 0 rgBT 2.8	/Overlock 10
41	Analysis of DNA Cytosine Methylation Patterns Using Methylation-Sensitive Amplification Polymorphism (MSAP). Methods in Molecular Biology, 2017, 1456, 99-112.	0.4	24
42	Genomics of Clinal Local Adaptation in <i>Pinus sylvestris</i> Under Continuous Environmental and Spatial Genetic Setting. G3: Genes, Genomes, Genetics, 2020, 10, 2683-2696.	0.8	24
43	Inhibitory effects of human cystatin C on plum pox potyvirus proteases. Plant Molecular Biology, 1993, 22, 697-701.	2.0	22
44	Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Molecular Ecology Notes, 2005, 5, 57-59.	1.7	21
45	Massive sequencing of Ulmus minor's transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Frontiers in Plant Science, 2015, 6, 541.	1.7	19
46	Molecular study of drought response in the Mediterranean conifer <i>Pinus pinaster</i> Ait.: Differential transcriptomic profiling reveals constitutive water deficitâ€independent drought tolerance mechanisms. Ecology and Evolution, 2020, 10, 9788-9807.	0.8	19
47	Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers. Annals of Forest Science, 2003, 60, 115-121.	0.8	17
48	Intracellular localization of three non-structural plum pox potyvirus proteins by immunogold labelling. Virus Research, 1992, 25, 201-211.	1.1	15
49	Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers. BMC Genomics, 2012, 13, 527.	1.2	13
50	Nucleotide polymorphisms in a pine ortholog of the <i>Arabidopsis</i> degrading enzyme cellulase KORRIGAN are associated with early growth performance in <i>Pinus pinaster</i> . Tree Physiology, 2015, 35, 1000-1006.	1.4	13
51	Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2]. Annals of Botany, 2017, 120, 591-602.	1.4	13
52	Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell, Tissue and Organ Culture, 2014, 118, 147-155.	1.2	12
53	Comprehensive analysis of the <scp>isomiRome</scp> in the vegetative organs of the conifer <scp><i>Pinus pinaster</i></scp> under contrasting water availability. Plant, Cell and Environment, 2021, 44, 706-728.	2.8	9
54	Engineering Resistance against Viral Diseases in Plants. Sub-Cellular Biochemistry, 1998, 29, 287-320.	1.0	9

#	Article	IF	CITATIONS
55	Correlating the above- and belowground genotype of Pinus pinaster trees and rhizosphere bacterial communities under drought conditions. Science of the Total Environment, 2022, 832, 155007.	3.9	6
56	Scion-rootstock interaction and drought systemic effect modulate the organ-specific terpene profiles in grafted Pinus pinaster Ait. Environmental and Experimental Botany, 2021, 186, 104437.	2.0	5
57	Maritime Pine Genomics in Focus. Compendium of Plant Genomes, 2022, , 67-123.	0.3	4
58	DNA sequence variation of drought-response candidate genes in Austrocedrus chilensis. Electronic Journal of Biotechnology, 2013, 16, .	1.2	1