List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8598554/publications.pdf Version: 2024-02-01

		117571	110317
91	4,339	34	64
papers	citations	h-index	g-index
113	113	113	2961
all docs	docs citations	times ranked	citing authors

YUN LINC

#	Article	IF	CITATIONS
1	Nonreciprocal coupling in space-time modulated systems at exceptional points. Physical Review B, 2022, 105, .	1.1	9
2	Observation of Degenerate Zero-Energy Topological States at Disclinations in an Acoustic Lattice. Physical Review Letters, 2022, 128, 174301.	2.9	35
3	Twisted pillared phononic crystal plates. Applied Physics Letters, 2022, 120, .	1.5	6
4	Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2361-2369.	1.7	3
5	A reconfigurable active acoustic metalens. Applied Physics Letters, 2021, 118, .	1.5	72
6	Systematic Design and Experimental Demonstration of Transmissionâ€Type Multiplexed Acoustic Metaholograms. Advanced Functional Materials, 2021, 31, 2101947.	7.8	43
7	mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1476-1486.	1.7	10
8	Photonic analog of bilayer graphene. Physical Review B, 2021, 103, .	1.1	26
9	Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial. Physical Review Applied, 2021, 16, .	1.5	12
10	Vat photopolymerization of fly-like, complex micro-architectures with dissolvable supports. Additive Manufacturing, 2021, 47, 102321.	1.7	7
11	Observation of higher-order exceptional points in a non-local acoustic metagrating. Communications Physics, 2021, 4, .	2.0	19
12	Loss in acoustic metasurfaces: a blessing in disguise. MRS Communications, 2020, 10, 32-41.	0.8	20
13	Magic-angle bilayer phononic graphene. Physical Review B, 2020, 102, .	1.1	37
14	Low-Frequency Broadband Acoustic Metasurface Absorbing Panels. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	23
15	A modified mixed domain method for modeling acoustic wave propagation in strongly heterogeneous media. Journal of the Acoustical Society of America, 2020, 147, 4055-4068.	0.5	7
16	A comparison study between acoustic topological states based on valley Hall and quantum spin Hall effects. Journal of the Acoustical Society of America, 2019, 146, 721-728.	0.5	21
17	Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Physical Review Applied, 2019, 12,	1.5	16
18	Guiding robust valley-dependent edge states by surface acoustic waves. Journal of Applied Physics, 2019, 125, .	1.1	23

#	Article	IF	CITATIONS
19	Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz. Applied Physics Letters, 2019, 114, .	1.5	26
20	Dynamic assessment of dual-frequency microbubble-mediated sonothrombolysis <i>in vitro</i> . Journal of Applied Physics, 2019, 125, .	1.1	10
21	Extremely Asymmetrical Acoustic Metasurface Mirror at the Exceptional Point. Physical Review Letters, 2019, 123, 214302.	2.9	104
22	Metasurface constituted by thin composite beams to steer flexural waves in thin plates. International Journal of Solids and Structures, 2019, 162, 14-20.	1.3	53
23	Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 669-675.	1.7	3
24	Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Science Bulletin, 2019, 64, 808-813.	4.3	36
25	Space-time phononic crystals with anomalous topological edge states. Physical Review Research, 2019, 1, .	1.3	18
26	Investigation of acoustic metasurfaces with constituent material properties considered. Journal of Applied Physics, 2018, 123, .	1.1	19
27	Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1258-1267.	1.7	14
28	Acoustic metacages for sound shielding with steady air flow. Journal of Applied Physics, 2018, 123, .	1.1	70
29	Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. Ultrasonics Sonochemistry, 2018, 41, 419-426.	3.8	61
30	Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics. Lab on A Chip, 2018, 18, 3645-3654.	3.1	36
31	A Modified Mixed Domain Method for Modeling Wave Propagation in Heterogeneous Media. , 2018, , .		1
32	Acoustic planar surface retroreflector. Physical Review Materials, 2018, 2, .	0.9	33
33	Composite honeycomb metasurface panel for broadband sound absorption. Journal of the Acoustical Society of America, 2018, 144, EL255-EL261.	0.5	116
34	Acoustic metasurfaces. Nature Reviews Materials, 2018, 3, 460-472.	23.3	539
35	Wavefront steering of elastic shear vertical waves in solids via a composite-plate-based metasurface. Journal of Applied Physics, 2018, 124, .	1.1	16
36	Simultaneous Observation of a Topological Edge State and Exceptional Point in an Open and Non-Hermitian Acoustic System. Physical Review Letters, 2018, 121, 124501.	2.9	168

#	Article	IF	CITATIONS
37	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	1.7	32
38	Observation of Self-Bending and Focused Ultrasound Beams in the Megahertz Range. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1460-1467.	1.7	11
39	Generation of multiband spoof surface acoustic waves via high-order modes. Physical Review B, 2018, 97, .	1.1	9
40	Sound insulation of multi-layer glass-fiber felts: Role of morphology. Textile Reseach Journal, 2017, 87, 261-269.	1.1	28
41	Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An <i>In vitro</i> study. Applied Physics Letters, 2017, 110, .	1.5	67
42	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5.8	74
43	Tunable Asymmetric Transmission via Lossy Acoustic Metasurfaces. Physical Review Letters, 2017, 119, 035501.	2.9	313
44	Investigation of the effective density of arbitrarily shaped plate-type acoustic metamaterials without mass attached. Wave Motion, 2017, 74, 124-133.	1.0	4
45	Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects. Physical Review B, 2017, 96, .	1.1	122
46	Ultrathin Acoustic Metasurface-Based Schroeder Diffuser. Physical Review X, 2017, 7, .	2.8	96
47	Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. , 2017, , .		Ο
48	Zone folding induced topological insulators in phononic crystals. , 2017, , .		1
49	On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached. Journal of the Acoustical Society of America, 2016, 140, 908-916.	0.5	14
50	Loss-induced Enhanced Transmission in Anisotropic Density-near-zero Acoustic Metamaterials. Scientific Reports, 2016, 6, 37918.	1.6	6
51	Membrane- and plate-type acoustic metamaterials. Journal of the Acoustical Society of America, 2016, 139, 3240-3250.	0.5	142
52	Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Applied Physics Letters, 2016, 108, .	1.5	139
53	Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Composites Part B: Engineering, 2016, 96, 281-286.	5.9	75
54	Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 2016, 6, 35437.	1.6	131

#	Article	IF	CITATIONS
55	Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an <i>in vitro</i> study. Physics in Medicine and Biology, 2015, 60, 7403-7418.	1.6	49
56	A lightweight yet sound-proof honeycomb acoustic metamaterial. Applied Physics Letters, 2015, 106, .	1.5	187
57	Broadband Acoustic Hyperbolic Metamaterial. Physical Review Letters, 2015, 115, 254301.	2.9	134
58	Modeling of wave propagation for medical ultrasound: a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1979-1992.	1.7	46
59	Response to "Comment on â€~A lightweight yet sound-proof honeycomb acoustic metamaterial'―[Appl. Phys. Lett. 107 , 216101 (2015)]. Applied Physics Letters, 2015, 107, .	1.5	0
60	Thrombolysis enhanced by dual-frequency highintensity focused ultrasound. , 2014, , .		0
61	Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 2014, 4, .	2.8	104
62	An improved wave-vector frequency-domain method for nonlinear wave modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 515-524.	1.7	11
63	Side branch-based acoustic metamaterials with a broad-band negative bulk modulus. Applied Physics A: Materials Science and Processing, 2014, 117, 1885-1891.	1.1	15
64	A wave-vector-frequency-domain method for linear/nonlinear wave modeling in heterogeneous media. , 2014, , .		0
65	Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 2014, 153, 315-321.	4.8	129
66	Ultrasoundâ€īriggered Regulation of Blood Glucose Levels Using Injectable Nanoâ€Network. Advanced Healthcare Materials, 2014, 3, 811-816.	3.9	81
67	Experimental verification of transient nonlinear acoustical holography. Journal of the Acoustical Society of America, 2013, 133, 2533-2540.	0.5	16
68	Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1699-1707.	1.7	34
69	Investigation on the effect of aperture sizes and receiver positions in coupled rooms. Journal of the Acoustical Society of America, 2013, 133, 3975-3985.	0.5	23
70	Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Physics in Medicine and Biology, 2013, 58, 6663-6681.	1.6	27
71	A diffusion equation model for investigations on acoustics in coupled-volume systems. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
72	On the use of an absorption layer for the angular spectrum approach (L). Journal of the Acoustical Society of America, 2012, 131, 999-1002.	0.5	7

#	Article	IF	CITATIONS
73	Time-reversal transcranial ultrasound beam focusing using a k-space method. Physics in Medicine and Biology, 2012, 57, 901-917.	1.6	51
74	A k-Space Method for Moderately Nonlinear Wave Propagation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1664-1673.	1.7	33
75	Numerical study of a near-zero-index acoustic metamaterial. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2834-2837.	0.9	78
76	Verification of the westervelt equation for focused transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1097-1101.	1.7	23
77	Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation. Journal of the Acoustical Society of America, 2011, 129, 32-46.	0.5	39
78	Combining twoâ€dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magnetic Resonance in Medicine, 2011, 66, 112-122.	1.9	40
79	On the use of Gegenbauer reconstructions for shock wave propagation modeling. Journal of the Acoustical Society of America, 2011, 130, 1115-1124.	0.5	13
80	On the use of Gegenbauer reconstructions for shock wave propagation modeling. , 2010, , .		1
81	One-dimensional transport equation models for sound energy propagation in long spaces: Theory. Journal of the Acoustical Society of America, 2010, 127, 2312-2322.	0.5	17
82	One-dimensional transport equation models for sound energy propagation in long spaces: Simulations and experiments. Journal of the Acoustical Society of America, 2010, 127, 2323-2331.	0.5	16
83	Investigation of acoustically coupled enclosures using a diffusion-equation model. Journal of the Acoustical Society of America, 2009, 126, 1187-1198.	0.5	44
84	Optimum design of echogenic needles for ultrasound guided nerve block. , 2008, , .		0
85	On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments. Journal of the Acoustical Society of America, 2008, 123, 145-153.	0.5	52
86	Visualizations of sound energy across coupled rooms using a diffusion equation model. Journal of the Acoustical Society of America, 2008, 124, EL360-EL365.	0.5	25
87	A modified diffusion equation for room-acoustic predication. Journal of the Acoustical Society of America, 2007, 121, 3284-3287.	0.5	33
88	Frequency Shift of Thickness-Shear Vibrations of AT-Cut Quartz Resonators Due to a Liquid Layer with the Electrode Stiffness Considered. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1290-1292.	1.7	10
89	Stress-induced frequency shifts in rotated Y-cut langasite resonators with electrodes considered. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 906-909.	1.7	5
90	Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current: Nonlinear stability analysis. Physical Review B, 2007, 76, .	1.1	8

#	Article	IF	CITATIONS
91	Effect of Electrodes on Force–Frequency Characteristics of Rotated Y-Cut Quartz Resonators. Japanese Journal of Applied Physics, 2006, 45, 9167-9171.	0.8	2