Yun Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8598554/publications.pdf

Version: 2024-02-01

117571 110317 4,339 91 34 64 citations h-index g-index papers 113 113 113 2961 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Acoustic metasurfaces. Nature Reviews Materials, 2018, 3, 460-472.	23.3	539
2	Tunable Asymmetric Transmission via Lossy Acoustic Metasurfaces. Physical Review Letters, 2017, 119, 035501.	2.9	313
3	A lightweight yet sound-proof honeycomb acoustic metamaterial. Applied Physics Letters, 2015, 106, .	1.5	187
4	Simultaneous Observation of a Topological Edge State and Exceptional Point in an Open and Non-Hermitian Acoustic System. Physical Review Letters, 2018, 121, 124501.	2.9	168
5	Membrane- and plate-type acoustic metamaterials. Journal of the Acoustical Society of America, 2016, 139, 3240-3250.	0.5	142
6	Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Applied Physics Letters, 2016, 108, .	1.5	139
7	Broadband Acoustic Hyperbolic Metamaterial. Physical Review Letters, 2015, 115, 254301.	2.9	134
8	Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 2016, 6, 35437.	1.6	131
9	Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 2014, 153, 315-321.	4.8	129
10	Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects. Physical Review B, 2017, 96, .	1.1	122
11	Composite honeycomb metasurface panel for broadband sound absorption. Journal of the Acoustical Society of America, 2018, 144, EL255-EL261.	0.5	116
12	Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review $X,2014,4,.$	2.8	104
13	Extremely Asymmetrical Acoustic Metasurface Mirror at the Exceptional Point. Physical Review Letters, 2019, 123, 214302.	2.9	104
14	Ultrathin Acoustic Metasurface-Based Schroeder Diffuser. Physical Review X, 2017, 7, .	2.8	96
15	Ultrasoundâ€Triggered Regulation of Blood Glucose Levels Using Injectable Nanoâ€Network. Advanced Healthcare Materials, 2014, 3, 811-816.	3.9	81
16	Numerical study of a near-zero-index acoustic metamaterial. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2834-2837.	0.9	78
17	Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Composites Part B: Engineering, 2016, 96, 281-286.	5. 9	75
18	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5 . 8	74

#	Article	IF	Citations
19	A reconfigurable active acoustic metalens. Applied Physics Letters, 2021, 118, .	1.5	72
20	Acoustic metacages for sound shielding with steady air flow. Journal of Applied Physics, 2018, 123, .	1.1	70
21	Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An <i>In vitro</i> study. Applied Physics Letters, 2017, 110, .	1.5	67
22	Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. Ultrasonics Sonochemistry, 2018, 41, 419-426.	3.8	61
23	Metasurface constituted by thin composite beams to steer flexural waves in thin plates. International Journal of Solids and Structures, 2019, 162, 14-20.	1.3	53
24	On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments. Journal of the Acoustical Society of America, 2008, 123, 145-153.	0.5	52
25	Time-reversal transcranial ultrasound beam focusing using a k-space method. Physics in Medicine and Biology, 2012, 57, 901-917.	1.6	51
26	Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an <i>in vitro</i> study. Physics in Medicine and Biology, 2015, 60, 7403-7418.	1.6	49
27	Modeling of wave propagation for medical ultrasound: a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1979-1992.	1.7	46
28	Investigation of acoustically coupled enclosures using a diffusion-equation model. Journal of the Acoustical Society of America, 2009, 126, 1187-1198.	0.5	44
29	Systematic Design and Experimental Demonstration of Transmissionâ€Type Multiplexed Acoustic Metaholograms. Advanced Functional Materials, 2021, 31, 2101947.	7.8	43
30	Combining twoâ€dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magnetic Resonance in Medicine, 2011, 66, 112-122.	1.9	40
31	Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation. Journal of the Acoustical Society of America, 2011, 129, 32-46.	0.5	39
32	Magic-angle bilayer phononic graphene. Physical Review B, 2020, 102, .	1.1	37
33	Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics. Lab on A Chip, 2018, 18, 3645-3654.	3.1	36
34	Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Science Bulletin, 2019, 64, 808-813.	4.3	36
35	Observation of Degenerate Zero-Energy Topological States at Disclinations in an Acoustic Lattice. Physical Review Letters, 2022, 128, 174301.	2.9	35
36	Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1699-1707.	1.7	34

#	Article	IF	Citations
37	A modified diffusion equation for room-acoustic predication. Journal of the Acoustical Society of America, 2007, 121, 3284-3287.	0.5	33
38	A k-Space Method for Moderately Nonlinear Wave Propagation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1664-1673.	1.7	33
39	Acoustic planar surface retroreflector. Physical Review Materials, 2018, 2, .	0.9	33
40	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	1.7	32
41	Sound insulation of multi-layer glass-fiber felts: Role of morphology. Textile Reseach Journal, 2017, 87, 261-269.	1.1	28
42	Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Physics in Medicine and Biology, 2013, 58, 6663-6681.	1.6	27
43	Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz. Applied Physics Letters, 2019, 114, .	1.5	26
44	Photonic analog of bilayer graphene. Physical Review B, 2021, 103, .	1.1	26
45	Visualizations of sound energy across coupled rooms using a diffusion equation model. Journal of the Acoustical Society of America, 2008, 124, EL360-EL365.	0.5	25
46	Verification of the westervelt equation for focused transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1097-1101.	1.7	23
47	Investigation on the effect of aperture sizes and receiver positions in coupled rooms. Journal of the Acoustical Society of America, 2013, 133, 3975-3985.	0.5	23
48	Guiding robust valley-dependent edge states by surface acoustic waves. Journal of Applied Physics, 2019, 125, .	1.1	23
49	Low-Frequency Broadband Acoustic Metasurface Absorbing Panels. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	23
50	A comparison study between acoustic topological states based on valley Hall and quantum spin Hall effects. Journal of the Acoustical Society of America, 2019, 146, 721-728.	0.5	21
51	Loss in acoustic metasurfaces: a blessing in disguise. MRS Communications, 2020, 10, 32-41.	0.8	20
52	Investigation of acoustic metasurfaces with constituent material properties considered. Journal of Applied Physics, 2018, 123, .	1.1	19
53	Observation of higher-order exceptional points in a non-local acoustic metagrating. Communications Physics, 2021, 4, .	2.0	19
54	Space-time phononic crystals with anomalous topological edge states. Physical Review Research, 2019, 1 , .	1.3	18

#	Article	IF	CITATIONS
55	One-dimensional transport equation models for sound energy propagation in long spaces: Theory. Journal of the Acoustical Society of America, 2010, 127, 2312-2322.	0.5	17
56	One-dimensional transport equation models for sound energy propagation in long spaces: Simulations and experiments. Journal of the Acoustical Society of America, 2010, 127, 2323-2331.	0.5	16
57	Experimental verification of transient nonlinear acoustical holography. Journal of the Acoustical Society of America, 2013, 133, 2533-2540.	0.5	16
58	Wavefront steering of elastic shear vertical waves in solids via a composite-plate-based metasurface. Journal of Applied Physics, 2018, 124, .	1.1	16
59	Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Physical Review Applied, 2019, 12, .	1.5	16
60	Side branch-based acoustic metamaterials with a broad-band negative bulk modulus. Applied Physics A: Materials Science and Processing, 2014, 117, 1885-1891.	1.1	15
61	On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached. Journal of the Acoustical Society of America, 2016, 140, 908-916.	0.5	14
62	Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1258-1267.	1.7	14
63	On the use of Gegenbauer reconstructions for shock wave propagation modeling. Journal of the Acoustical Society of America, 2011, 130, 1115-1124.	0.5	13
64	Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial. Physical Review Applied, 2021, 16, .	1.5	12
65	An improved wave-vector frequency-domain method for nonlinear wave modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 515-524.	1.7	11
66	Observation of Self-Bending and Focused Ultrasound Beams in the Megahertz Range. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1460-1467.	1.7	11
67	Frequency Shift of Thickness-Shear Vibrations of AT-Cut Quartz Resonators Due to a Liquid Layer with the Electrode Stiffness Considered. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1290-1292.	1.7	10
68	Dynamic assessment of dual-frequency microbubble-mediated sonothrombolysis <i>in vitro</i> . Journal of Applied Physics, 2019, 125, .	1.1	10
69	mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1476-1486.	1.7	10
70	Generation of multiband spoof surface acoustic waves via high-order modes. Physical Review B, 2018, 97, .	1.1	9
71	Nonreciprocal coupling in space-time modulated systems at exceptional points. Physical Review B, 2022, 105, .	1.1	9
72	Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current: Nonlinear stability analysis. Physical Review B, 2007, 76, .	1.1	8

#	Article	IF	Citations
73	On the use of an absorption layer for the angular spectrum approach (L). Journal of the Acoustical Society of America, 2012, 131, 999-1002.	0.5	7
74	A modified mixed domain method for modeling acoustic wave propagation in strongly heterogeneous media. Journal of the Acoustical Society of America, 2020, 147, 4055-4068.	0.5	7
75	Vat photopolymerization of fly-like, complex micro-architectures with dissolvable supports. Additive Manufacturing, 2021, 47, 102321.	1.7	7
76	Loss-induced Enhanced Transmission in Anisotropic Density-near-zero Acoustic Metamaterials. Scientific Reports, 2016, 6, 37918.	1.6	6
77	Twisted pillared phononic crystal plates. Applied Physics Letters, 2022, 120, .	1.5	6
78	Stress-induced frequency shifts in rotated Y-cut langasite resonators with electrodes considered. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 906-909.	1.7	5
79	Investigation of the effective density of arbitrarily shaped plate-type acoustic metamaterials without mass attached. Wave Motion, 2017, 74, 124-133.	1.0	4
80	Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 669-675.	1.7	3
81	Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2361-2369.	1.7	3
82	Effect of Electrodes on Force–Frequency Characteristics of Rotated Y-Cut Quartz Resonators. Japanese Journal of Applied Physics, 2006, 45, 9167-9171.	0.8	2
83	On the use of Gegenbauer reconstructions for shock wave propagation modeling. , 2010, , .		1
84	Zone folding induced topological insulators in phononic crystals. , 2017, , .		1
85	A Modified Mixed Domain Method for Modeling Wave Propagation in Heterogeneous Media. , 2018, , .		1
86	Optimum design of echogenic needles for ultrasound guided nerve block. , 2008, , .		0
87	A diffusion equation model for investigations on acoustics in coupled-volume systems. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
88	Thrombolysis enhanced by dual-frequency highintensity focused ultrasound., 2014,,.		0
89	A wave-vector-frequency-domain method for linear/nonlinear wave modeling in heterogeneous media. , 2014, , .		0
90	Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. , 2017, , \cdot		0

ARTICLE IF CITATIONS

91 Response to "Comment on â€~A lightweight yet sound-proof honeycomb acoustic metamaterial'―[Appl. 1.5 0