
Steve Schulze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow. Astronomy and Astrophysics, 2022, 657, A64.	2.1	8
2	A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature, 2022, 601, 201-204.	13.7	48
3	The supernova of the MAGIC gamma-ray burst GRB 190114C. Astronomy and Astrophysics, 2022, 659, A39.	2.1	11
4	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	1.6	10
5	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	1.6	35
6	The GALEX-PTF Experiment. II. Supernova Progenitor Radius and Energetics via Shock-cooling Modeling. Astrophysical Journal, 2022, 931, 71.	1.6	2
7	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	2.9	41
8	The Peculiar Short-duration GRB 200826A and Its Supernova*. Astrophysical Journal, 2022, 932, 1.	1.6	37
9	A Late-time Radio Flare Following a Possible Transition in Accretion State in the Tidal Disruption Event AT 2019azh. Astrophysical Journal, 2022, 933, 176.	1.6	15
10	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	1.6	16
11	RINGO3 polarimetry of very young ZTF supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 503, 312-323.	1.6	12
12	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	1.6	59
13	A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion. Astrophysical Journal, 2021, 912, 46.	1.6	66
14	Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2021, 651, A81.	2.1	19
15	SNÂ2019hcc: a Type II supernova displaying early O ii lines. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4819-4840.	1.6	3
16	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	3.0	56
17	SN 2020bqj: A Type Ibn supernova with a long-lasting peak plateau. Astronomy and Astrophysics, 2021, 652, A136.	2.1	7
18	The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics. Astronomy and Astrophysics, 2021, 655, A105.	2.1	10

#	Article	IF	CITATIONS
19	A low-energy explosion yields the underluminous Type IIP SN 2020cxd. Astronomy and Astrophysics, 2021, 655, A90.	2.1	10
20	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	1.6	44
21	Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4342-4358.	1.6	6
22	Two c's in a pod: cosmology-independent measurement of the Type Ia supernova colour–luminosity relation with a sibling pair. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5340-5356.	1.6	9
23	Faintest of Them All: ZTF 21aaoryiz/SN 2021fcg—Discovery of an Extremely Low Luminosity Type Iax Supernova. Astrophysical Journal Letters, 2021, 921, L6.	3.0	8
24	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	1.6	58
25	The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1925-1934.	1.6	25
26	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	1.6	35
27	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. Astrophysical Journal, 2020, 892, 153.	1.6	40
28	The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. Astrophysical Journal, 2020, 895, 32.	1.6	91
29	GRB 190114C in the nuclear region of an interacting galaxy. Astronomy and Astrophysics, 2020, 633, A68.	2.1	12
30	Type IIn supernova light-curve properties measured from an untargeted survey sample. Astronomy and Astrophysics, 2020, 637, A73.	2.1	47
31	The interacting nature of dwarf galaxies hosting superluminous supernovae. Astronomy and Astrophysics, 2020, 643, A47.	2.1	11
32	Two stripped envelope supernovae with circumstellar interaction. Astronomy and Astrophysics, 2020, 643, A79.	2.1	18
33	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	1.6	9
34	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	1.6	32
35	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	1.6	25
36	The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry. Astrophysical Journal, 2020, 902, 46.	1.6	32

#	Article	IF	CITATIONS
37	SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova. Astrophysical Journal, 2020, 900, 46.	1.6	38
38	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	1.6	25
39	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	1.6	18
40	A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi. Astrophysical Journal, 2020, 903, 132.	1.6	19
41	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	1.6	107
42	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	3.0	18
43	Highly luminous supernovae associated with gamma-ray bursts. Astronomy and Astrophysics, 2019, 624, A143.	2.1	33
44	The X-shooter GRB afterglow legacy sample (XS-GRB). Astronomy and Astrophysics, 2019, 623, A92.	2.1	47
45	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
46	ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	3.0	24
47	Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4816-4830.	1.6	100
48	Four GRB supernovae at redshifts between 0.4 and 0.8. Astronomy and Astrophysics, 2019, 622, A138.	2.1	20
49	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	1.6	38
50	The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5380-5408.	1.6	43
51	Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1559-1578.	1.6	90
52	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	1.6	20
53	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	1.6	8
54	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	1.6	55

#	Article	IF	CITATIONS
55	Observation of inverse Compton emission from a long \hat{I}^3 -ray burst. Nature, 2019, 575, 459-463.	13.7	146
56	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	1.0	1,020
57	Signatures of a jet cocoon in early spectra of a supernova associated with a Î ³ -ray burst. Nature, 2019, 565, 324-327.	13.7	88
58	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	1.6	72
59	SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1937-1959.	1.6	25
60	Cosmic evolution and metal aversion in superluminous supernova host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1258-1285.	1.6	120
61	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	1.6	105
62	Infrared molecular hydrogen lines in GRB host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1126-1132.	1.6	4
63	A nearby super-luminous supernova with a long pre-maximum & "plateau―and strong C†II features. Astronomy and Astrophysics, 2018, 620, A67.	2.1	36
64	The supermassive black hole coincident with the luminous transient ASASSN-15lh. Astronomy and Astrophysics, 2018, 610, A14.	2.1	24
65	The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. Astronomy and Astrophysics, 2018, 617, A122.	2.1	25
66	The host galaxy of the short GRB 111117A at <i>z</i> = 2.211. Astronomy and Astrophysics, 2018, 616, A48.	2.1	26
67	The Properties of GRB 120923A at a Spectroscopic Redshift of zÂâ‰^Â7.8. Astrophysical Journal, 2018, 865, 107.	1.6	23
68	X-shooter and ALMA spectroscopy of GRB 161023A. Astronomy and Astrophysics, 2018, 620, A119.	2.1	16
69	Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3312-3324.	1.6	30
70	The optical afterglow of the short gamma-ray burst associated with GW170817. Nature Astronomy, 2018, 2, 751-754.	4.2	185
71	On the nature of hydrogen-rich superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1046-1072.	1.6	65
72	The NuSTAR Serendipitous Survey: The 40-month Catalog and the Properties of the Distant High-energy X-Ray Source Population. Astrophysical Journal, 2017, 836, 99.	1.6	49

#	Article	IF	CITATIONS
73	SN 2015bh: NGC 2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?. Astronomy and Astrophysics, 2017, 599, A129.	2.1	46
74	A new, faint population of X-ray transients. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4841-4857.	1.6	46
75	The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astronomy and Astrophysics, 2017, 602, A9.	2.1	56
76	Early observations of the nearby Type Ia supernova SNÂ2015F. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4476-4494.	1.6	33
77	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	4.2	154
78	The Environment of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 848, L28.	3.0	114
79	ALMA and GMRT Constraints on the Off-axis Gamma-Ray Burst 170817A from the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L21.	3.0	49
80	Galaxy gas as obscurer – I. GRBs x-ray galaxies and find an \$N_{{m H}^{3}propto M_{star }\$ relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4545-4566.	1.6	36
81	Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4705-4717.	1.6	10
82	The MUSE view of the host galaxy of GRB 100316D. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4480-4496.	1.6	27
83	GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating. Astronomy and Astrophysics, 2017, 605, A107.	2.1	44
84	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 2017, 5, 6.	1.1	3
85	Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local. Astronomy and Astrophysics, 2017, 601, A83.	2.1	13
86	Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars. Astronomy and Astrophysics, 2017, 608, A84.	2.1	11
87	Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1039-1059.	1.6	50
88	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1111-1122.	1.6	26
89	THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD. Astrophysical Journal, 2016, 817, 8.	1.6	135
90	DETECTION OF THREE GAMMA-RAY BURST HOST GALAXIES AT z â^¼ 6. Astrophysical Journal, 2016, 825, 135.	1.6	29

#	Article	IF	CITATIONS
91	450 d of Type II SN 2013ej in optical and near-infrared. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2003-2018.	1.6	57
92	The optical identification of events with poorly defined locations: the case of the Fermi GBM GRB 140801A. Monthly Notices of the Royal Astronomical Society, 2016, 455, 712-724.	1.6	30
93	THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. Astrophysical Journal, 2016, 817, 7.	1.6	103
94	The central engine of GRB 130831A and the energy breakdown of a relativistic explosion. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1027-1042.	1.6	21
95	A Revised Host Galaxy Association for GRBÂ020819B: A High-Redshift Dusty Starburst, Not a Low-Redshift Gas-Poor Spiral. Monthly Notices of the Royal Astronomical Society: Letters, 2016, , .	1.2	29
96	Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 449, 917-932.	1.6	174
97	POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY. Astrophysical Journal Letters, 2015, 815, L10.	3.0	50
98	LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE. Astrophysical Journal Letters, 2015, 807, L18.	3.0	98
99	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	2.1	239
100	Massive stars exploding in a He-rich circumstellar medium – V. Observations of the slow-evolving SN Ibn OGLE-2012-SN-006. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1941-1953.	1.6	33
101	On the diversity of superluminous supernovae: ejected mass as the dominant factor. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3869-3893.	1.6	154
102	A young stellar environment for the superluminous supernova PTF12dam. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 451, L65-L69.	1.2	34
103	The warm, the excited, and the molecular gas: GRBÂ121024A shining through its star-forming galaxyâ~ Monthly Notices of the Royal Astronomical Society, 2015, 451, 167-183.	1.6	59
104	Identifying the host galaxy of the short GRB 100628A. Astronomy and Astrophysics, 2015, 583, A88.	2.1	4
105	GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological γ-ray burst?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1535-1552.	1.6	28
106	The optical rebrightening of GRB100814A: an interplay of forward and reverse shocks?. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1024-1042.	1.6	14
107	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT â ⁻¹ /46. Astrophysical Journal, 2015, 808, 73.	1.6	60
108	GRB hosts through cosmic time. Astronomy and Astrophysics, 2015, 581, A125.	2.1	149

#	Article	IF	CITATIONS
109	Type Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2924-2937.	1.6	16
110	A trio of gamma-ray burst supernovae:. Astronomy and Astrophysics, 2014, 568, A19.	2.1	62
111	A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 781, 13.	1.6	207
112	THE METALLICITY AND DUST CONTENT OF A REDSHIFT 5 GAMMA-RAY BURST HOST GALAXY. Astrophysical Journal, 2014, 785, 150.	1.6	64
113	CHARACTERIZING THE <i>V</i> BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE. Astrophysical Journal, 2014, 786, 67.	1.6	241
114	GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. Astronomy and Astrophysics, 2014, 566, A102.	2.1	87
115	The mysterious optical afterglow spectrum of GRB 140506A at <i>z</i> = 0.889. Astronomy and Astrophysics, 2014, 572, A12.	2.1	39
116	A quiescent galaxy at the position of the long GRB 050219A. Astronomy and Astrophysics, 2014, 572, A47.	2.1	18
117	Spectroscopy of the short-hard GRB 130603B. Astronomy and Astrophysics, 2014, 563, A62.	2.1	71
118	DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A. Astrophysical Journal, 2013, 776, 98.	1.6	99
119	Short GRB afterglows observed with GROND. EAS Publications Series, 2013, 61, 325-330.	0.3	0
120	Physical properties of rapidly decaying Afterglows. EAS Publications Series, 2013, 61, 217-221.	0.3	2
121	Molecular hydrogen in the damped Lyman <i>α</i> system towards GRB 120815A at <i>z</i> = 2.36. Astronomy and Astrophysics, 2013, 557, A18.	2.1	72
122	Pre-ALMA observations of GRBs in the mm/submm range. Astronomy and Astrophysics, 2012, 538, A44.	2.1	48
123	THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS. Astrophysical Journal, 2012, 756, 187.	1.6	156
124	A deep search for the host galaxies of gamma-ray bursts with no detected optical afterglow. Astronomy and Astrophysics, 2012, 545, A77.	2.1	60
125	Galaxy counterparts of intervening high- <i>z</i> sub-DLAs/DLAs and Mg ii absorbers towards gamma-ray bursts. Astronomy and Astrophysics, 2012, 546, A20.	2.1	21
126	Multi-color observations of short GRB afterglows: 20 events observed between 2007 and 2010. Astronomy and Astrophysics, 2012, 548, A101.	2.1	43

#	Article	IF	CITATIONS
127	The distribution of equivalent widths in long GRB afterglow spectra. Astronomy and Astrophysics, 2012, 548, A11.	2.1	43
128	The origin of the early-time optical emission of Swift GRB 080310â~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 2692-2712.	1.6	11
129	SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B. Astrophysical Journal Letters, 2011, 735, L24.	3.0	65
130	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2011, 734, 96.	1.6	187
131	The Swift/ <i>Fermi</i> GRB 080928 from 1 eV to 150ÂkeV. Astronomy and Astrophysics, 2011, 529, A142.	2.1	44
132	The circumburst density profile around GRB progenitors: aÂstatistical study. Astronomy and Astrophysics, 2011, 526, A23.	2.1	71
133	The circumburst density profile around GRB progenitors. , 2011, , .		1
134	Probing gamma-ray burst environments with time variability: ULTRASPEC fast imaging of GRB 080210a~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2229-2240.	1.6	14
135	GRB 070125 and the environments of spectral-line poor afterglow absorbersâ~ Monthly Notices of the Royal Astronomical Society, 2011, 418, 129-144.	1.6	13
136	An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy. Science, 2011, 333, 199-202.	6.0	290
137	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. I. COMPARING PRE- <i>SWIFT</i> AND <i>SWIFT</i> -ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2010, 720, 1513-1558.	1.6	253
138	GRB 080913 AT REDSHIFT 6.7. Astrophysical Journal, 2009, 693, 1610-1620.	1.6	175
139	The bright optical/NIR afterglow of the faint GRBÂ080710 – evidence of a jet viewed off-axis. Astronomy and Astrophysics, 2009, 508, 593-598.	2.1	44
140	GRB 080514B: the first high-energy AGILE burst with opticalâ^•NIR afterglow. , 2009, , .		0
141	GRBÂ060605: multi-wavelength analysis of the first GRBÂobserved using integral field spectroscopy. Astronomy and Astrophysics, 2009, 497, 729-741.	2.1	35
142	Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars. Nature, 2008, 455, 506-509.	13.7	39
143	A rapid response to GRB 070411. AIP Conference Proceedings, 2008, , .	0.3	4
144	Dark bursts in the Swift era. AIP Conference Proceedings, 2008, , .	0.3	1

#	Article	IF	CITATIONS
145	GRB 070610: Flares from a peculiar Galactic source. AIP Conference Proceedings, 2008, , .	0.3	0
146	A photometric redshift of <i>z</i> Â=Â1.8\$^{sf{+0.4}}_{sf{-0.3}}\$ for the <i>AGILE</i> GRB 080514B. Astronomy and Astrophysics, 2008, 491, L29-L32.	2.1	14
147	Die stäksten Explosionen im Universum. Gammaâ€Ray Bursts. Physik in Unserer Zeit, 2007, 38, 274-281.	0.0	0
148	Low frequency view of GRB 190114C reveals time varying shock micro-physics. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	16
149	PGIR 20eid (SN2020qmp): A Type IIP Supernova at 15.6 Mpc discovered by the Palomar Gattini-IR survey. Astronomy and Astrophysics, 0, , .	2.1	0