
Andrea Versari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8598330/publications.pdf

Version: 2024-02-01

ANDDEA VEDSADI

#	Article	IF	CITATIONS
1	Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. Food and Bioproducts Processing, 2022, 132, 1-12.	1.8	17
2	Membrane-based Operations for the Fractionation of Polyphenols and Polysaccharides From Winery Sludges. Food and Bioprocess Technology, 2022, 15, 933-948.	2.6	10
3	Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules, 2022, 27, 1671.	1.7	2
4	The macromolecular diversity of Italian monovarietal red wines. Oeno One, 2022, 56, 81-90.	0.7	5
5	Characterization of red wine native colloids by asymmetrical flow field-flow fractionation with online multidetection. Food Hydrocolloids, 2021, 110, 106204.	5.6	19
6	Volatile and sensory composition of Brazilian Muscat sparkling wine and Asti. Journal of Food Processing and Preservation, 2021, 45, e15240.	0.9	2
7	Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Research International, 2021, 143, 110277.	2.9	18
8	Portable Photometer for Procyanidins Quantitation in Red Wine. , 2021, , .		0
9	Unraveling the potential of cryotolerant Saccharomyces eubayanus in Chardonnay white wine production. LWT - Food Science and Technology, 2020, 134, 110183.	2.5	4
10	Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods, 2020, 9, 1649.	1.9	32
11	Rapid optical method for procyanidins estimation in red wines. Food Control, 2020, 118, 107439.	2.8	3
12	Wine derived additives as poly(butylene succinate) (PBS) natural stabilizers for different degradative environments. Polymer Degradation and Stability, 2020, 182, 109381.	2.7	14
13	Preliminary Study of the Effects of Pulsed Electric Field (PEF) Treatments in Wines Obtained from Early-Harvested Sangiovese Grapes. Beverages, 2020, 6, 34.	1.3	14
14	The Oxygen Consumption Kinetics of Commercial Oenological Tannins in Model Wine Solution and Chianti Red Wine. Molecules, 2020, 25, 1215.	1.7	11
15	Monitoring Oxidative Status in Winemaking by Untargeted Linear Sweep Voltammetry. Foods, 2020, 9, 728.	1.9	3
16	Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry, 2020, 68, 13353-13366.	2.4	41
17	Microwave-assisted extraction and membrane-based separation of biophenols from red wine lees. Food and Bioproducts Processing, 2019, 117, 74-83.	1.8	43
18	Characterization of an Antioxidant and Antimicrobial Extract from Cool Climate, White Grape Marc. Antioxidants, 2019, 8, 232.	2.2	31

#	Article	IF	CITATIONS
19	Mannoprotein Content and Volatile Molecule Profiles of Trebbiano Wines Obtained by Saccharomyces cerevisiae and Saccharomyces bayanus Strains. Fermentation, 2019, 5, 66.	1.4	4
20	Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins. Molecules, 2019, 24, 2925.	1.7	30
21	Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chemistry, 2019, 283, 499-507.	4.2	19
22	Future climatic suitability of the Emilia-Romagna (Italy) region for grape production. Regional Environmental Change, 2019, 19, 599-614.	1.4	17
23	Fast Analysis of Total Polyphenol Content and Antioxidant Activity in Wines and Oenological Tannins Using a Flow Injection System with Tandem Diode Array and Electrochemical Detections. Food Analytical Methods, 2019, 12, 347-354.	1.3	11
24	Multivariate characterisation of Italian monovarietal red wines using MIR spectroscopy. Oeno One, 2019, 53, .	0.7	16
25	Utilization of â€~early green harvest' and non-Saccharomyces cerevisiae yeasts as a combined approach to face climate change in winemaking. European Food Research and Technology, 2018, 244, 1301-1311.	1.6	7
26	Climate change trends, grape production, and potential alcohol concentration in wine from the "Romagna Sangiovese―appellation area (Italy). Theoretical and Applied Climatology, 2018, 131, 793-803.	1.3	23
27	Effect of heat on grape marc extract. International Journal of Nanotechnology, 2018, 15, 792.	0.1	1
28	Effect of Different Glass Shapes and Size on the Time Course of Dissolved Oxygen in Wines during Simulated Tasting. Beverages, 2018, 4, 3.	1.3	8
29	Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages, 2018, 4, 18.	1.3	64
30	The use of cation exchange resins in wines: Effects on pH, tartrate stability, and metal content. , 2018, 45, 82-92.		11
31	Utilization of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Industrial Crops and Products, 2017, 99, 49-59.	2.5	70
32	Analytical profiling of food-grade extracts from grape (Vitis vinifera sp.) seeds and skins, green tea () Tj ETQq0 0 0 and spectrophotometric methods. Journal of Food Composition and Analysis, 2017, 59, 95-104.	rgBT /Ove 1.9	erlock 10 Tf 39
33	Rapid assessment of red wine compositional parameters by means of a new Waveguide Vector Spectrometer. LWT - Food Science and Technology, 2017, 84, 433-440.	2.5	5
34	Sage processing from by-product to high quality powder: I. Bioactive potential. Industrial Crops and Products, 2017, 107, 81-89.	2.5	39
35	Characterisation of yeast microbiota, chemical and sensory properties of organic and biodynamic Sangiovese red wines. Annals of Microbiology, 2017, 67, 99-109.	1.1	24
36	Modelling the evolution of oxidative browning during storage of white wines: effects of packaging and closures. International Journal of Food Science and Technology, 2017, 52, 472-479.	1.3	24

#	Article	IF	CITATIONS
37	Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961-2015. Climate Research, 2017, 73, 195-206.	0.4	10
38	Antioxidant activity of commercial food grade tannins exemplified in a wine model. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1761-1774.	1.1	26
39	Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking. Journal of Food Science and Technology, 2016, 53, 2634-2643.	1.4	10
40	Effect of coâ€inoculation with yeast and bacteria on chemical and sensory characteristics of commercial Cabernet Franc red wine from Switzerland. Journal of Chemical Technology and Biotechnology, 2016, 91, 876-882.	1.6	19
41	Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin. Food Chemistry, 2016, 203, 425-429.	4.2	28
42	Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins. Applied Spectroscopy, 2015, 69, 1243-1250.	1.2	24
43	Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins. Applied Spectroscopy Reviews, 2015, 50, 407-442.	3.4	250
44	Monitoring peroxides generation during model wine fermentation by FOX-1 assay. Food Chemistry, 2015, 175, 25-28.	4.2	9
45	Changes in phenolic composition of red wines aged in cherry wood. LWT - Food Science and Technology, 2015, 60, 977-984.	2.5	26
46	Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chemistry, 2015, 167, 145-152.	4.2	45
47	Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chemistry, 2015, 171, 412-420.	4.2	47
48	Effects of late defoliations on chemical and sensory characteristics of cv. uva longanesi wines. Journal of Soil Science and Plant Nutrition, 2014, , 0-0.	1.7	2
49	Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 2014, 60, 2-18.	2.9	193
50	Qualitative discrimination between organic and biodynamic Sangiovese red wines for authenticity. Analytical Methods, 2014, 6, 7484.	1.3	9
51	Metabonomic Investigation by 1H-NMR to Discriminate between Red Wines from Organic and Biodynamic Grapes. Food and Nutrition Sciences (Print), 2014, 05, 52-59.	0.2	30
52	Relationship Between Chemical Markers and Sensory Score of Traditional Balsamic Vinegars Using a Screening Approach Combined with Rapid Assessment Methods. Food Analytical Methods, 2013, 6, 1697-1703.	1.3	3
53	Oenological tannins: a review. Australian Journal of Grape and Wine Research, 2013, 19, 1-10.	1.0	113
54	Relationship between sensory and NIR spectroscopy in consumer preference of table grape (cv Italia). Postharvest Biology and Technology, 2013, 83, 47-53.	2.9	41

#	Article	IF	CITATIONS
55	Mass Spectral Characterization of Uva Longanesi Seed and Skin Extracts. American Journal of Enology and Viticulture, 2012, 63, 402-406.	0.9	5
56	Effect of microâ€oxygenation on sensory characteristics and consumer preference of Cabernet Sauvignon wine. Journal of the Science of Food and Agriculture, 2012, 92, 1238-1244.	1.7	15
57	FTIR Spectroscopy and Direct Orthogonal Signal Correction Preprocessing Applied to Selected Phenolic Compounds in Red Wines. Food Analytical Methods, 2011, 4, 619-625.	1.3	36
58	Prediction of sensory score of Italian traditional balsamic vinegars of Reggio-Emilia by mid-infrared spectroscopy. Food Chemistry, 2011, 125, 1345-1350.	4.2	12
59	Prediction of colloidal stability in white wines using infrared spectroscopy. Journal of Food Engineering, 2011, 104, 239-245.	2.7	13
60	Characterization of Uva Longanesi Red Wine by Selected Parameters Related to Astringency. International Journal of Food Properties, 2011, 14, 1081-1089.	1.3	3
61	Fingerprint of enological tannins by multiple techniques approach. Food Chemistry, 2010, 121, 783-788.	4.2	57
62	Fermentation of sulphite-free white musts with added lysozyme and oenological tannins: Nitrogen consumption and biogenic amines composition of final wines. LWT - Food Science and Technology, 2010, 43, 1501-1507.	2.5	34
63	Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control, 2010, 21, 786-789.	2.8	73
64	Relationship among sensory descriptors, consumer preference and color parameters of Italian Novello red wines. Food Research International, 2009, 42, 1389-1395.	2.9	65
65	Analysis of mechanical properties of cork stoppers and synthetic closures used for wine bottling. Journal of Food Engineering, 2008, 88, 576-580.	2.7	15
66	A comparison of analytical methods for measuring the color components of red wines. Food Chemistry, 2008, 106, 397-402.	4.2	62
67	Characterisation of Italian commercial apricot juices by high-performance liquid chromatography analysis and multivariate analysis. Food Chemistry, 2008, 108, 334-340.	4.2	38
68	Comparison of Two Quantitation Methods in HPLC: Standardless Versus Calibration with External Standards. Application to the Analysis of Amino Acids in Fruit Juices. Journal of Chromatographic Science, 2007, 45, 515-518.	0.7	3
69	Discrimination of apricot cultivars by gas multisensor array using an artificial neural network. Biosystems Engineering, 2007, 97, 371-378.	1.9	20
70	Sensory evaluation of egg products and eggs laid from hens fed diets with different fatty acid composition and supplemented with antioxidants. Food Research International, 2006, 39, 47-52.	2.9	49
71	Treatment of Grape Juice by Osmotic Evaporation. Journal of Food Science, 2004, 69, E422.	1.5	11
72	Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis. Food Control, 2004, 15, 355-358.	2.8	40

#	Article	IF	CITATIONS
73	Concentration of Grape Must by Nanofiltration Membranes. Food and Bioproducts Processing, 2003, 81, 275-278.	1.8	35
74	Analysis of Some Italian Lemon Liquors (Limoncello). Journal of Agricultural and Food Chemistry, 2003, 51, 4978-4983.	2.4	58
75	Preliminary Study on Glucose Oxidase–Catalase Enzyme System to Control the Browning of Apple and Pear Purées. LWT - Food Science and Technology, 2002, 35, 239-243.	2.5	33
76	High-Performance Liquid Chromatographic Analysis of Free Amino Acids in Fruit Juices Using Derivatization with 9-Fluorenylmethyl-Chloroformate. Journal of Chromatographic Science, 2002, 40, 14-18.	0.7	77
77	Enzymatic hydrolysis of nitrides by an engineered nitrile hydratase (Papain Gln19Glu) in aqueous-organic media. Biotechnology and Bioengineering, 2002, 79, 9-14.	1.7	9
78	Chemometric Survey of Italian Bottled Mineral Waters by Means of their Labelled Physico-chemical and Chemical Composition. Journal of Food Composition and Analysis, 2002, 15, 251-264.	1.9	74
79	Characterisation of peach juices obtained from cultivars Redhaven, Suncrest and Maria Marta grown in Italy. Food Chemistry, 2002, 76, 181-185.	4.2	40
80	Removal of Ochratoxin A in Red Wines by Means of Adsorption Treatments with Commercial Fining Agents. Journal of Agricultural and Food Chemistry, 2001, 49, 3917-3921.	2.4	118
81	Stilbene Compounds and Stilbene Synthase Expression during Ripening, Wilting, and UV Treatment in Grape cv. Corvina. Journal of Agricultural and Food Chemistry, 2001, 49, 5531-5536.	2.4	172
82	A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment. Journal of Food Engineering, 2001, 50, 113-116.	2.7	49
83	Recovery of tartaric acid from industrial enological wastes. Journal of Chemical Technology and Biotechnology, 2001, 76, 485-488.	1.6	36
84	STEVIOSIDE AS A REPLACEMENT OF SUCROSE IN PEACH JUICE: SENSORY EVALUATION. Journal of Sensory Studies, 2001, 16, 471-484.	0.8	31
85	A Simple High-Performance Liquid Chromatography Method for the Analysis of Glucose, Glycerol, and Methanol in a Bioprocess. Journal of Chromatographic Science, 2000, 38, 259-261.	0.7	16
86	AN IMPROVED HPLC METHOD FOR THE ANALYSIS OF ORGANIC ACIDS, CARBOHYDRATES, AND ALCOHOLS IN GRAPE MUSTS AND WINES. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 2047-2056.	0.5	113
87	The determination of total SO2in grape juice. A comparison among five methods. Food Additives and Contaminants, 2000, 17, 973-977.	2.0	6
88	Phloretin Glycosides: Bioactive Compounds in Apple Fruit, Purées, and Juices. Journal of Medicinal Food, 2000, 3, 149-151.	0.8	9
89	Anthocyanin composition of Montepulciano d'Abruzzo must during industrial fermentation process. Journal of Wine Research, 1999, 10, 223-227.	0.9	1
90	HPAEC–PAD analysis of oligogalacturonic acids in strawberry juice. Food Chemistry, 1999, 66, 257-261.	4.2	19

#	Article	IF	CITATIONS
91	Leuconostoc oenos and malolactic fermentation in wine: a review. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 447-455.	1.4	131
92	Characterization of Tyrosinase- and Polyphenol Esterase-Catalyzed End Products Using Selected Phenolic Substrates. Journal of Agricultural and Food Chemistry, 1999, 47, 2486-2490.	2.4	8
93	Physico-chemical characteristics of some oenological gelatins and their action on selected red wine components. Journal of the Science of Food and Agriculture, 1998, 78, 245-250.	1.7	17
94	Adulteration of Fruit Juices: Dihydrochalcones as Quality Markers for Apple Juice Identification. LWT - Food Science and Technology, 1997, 30, 585-589.	2.5	32
95	Effects of pectolytic enzymes on selected phenolic compounds in strawberry and raspberry juices. Food Research International, 1997, 30, 811-817.	2.9	52
96	The use of bentonite as a moisture regulating system 1. Study on some sorption properties of bentonites for their potential use in food technology. Journal of Food Engineering, 1997, 33, 193-206.	2.7	6
97	Gas chromatography and highâ€pressure liquid chromatography determination of resveratrol in Italian red wines. Journal of Wine Research, 1996, 7, 5-11.	0.9	4
98	Liquid-liquid extraction of silylated polyalcohols from vinegar, and their determination by capillary GC. Journal of High Resolution Chromatography, 1994, 17, 553-555.	2.0	6