
## Zohreh Nemati Porshokouh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597927/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bioapplications of Magnetic Nanowires: Barcodes, Biocomposites, Heaters. IEEE Transactions on<br>Magnetics, 2022, 58, 1-6.                                        | 1.2 | 2         |
| 2  | Hollow Magnetic Nanoparticles. Springer Series in Materials Science, 2021, , 137-158.                                                                             | 0.4 | 3         |
| 3  | Selective Detection of Cancer Cells Using Magnetic Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 21060-21066.                                          | 4.0 | 14        |
| 4  | Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle<br>Interactions. Nanomaterials, 2021, 11, 1380.                        | 1.9 | 12        |
| 5  | Realizing the Principles for Remote and Selective Detection of Cancer Cells Using Magnetic Nanowires. Journal of Physical Chemistry B, 2021, 125, 7742-7749.      | 1.2 | 5         |
| 6  | Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4<br>Nanoparticles to Ni Nanowires. Nanomaterials, 2020, 10, 1662.      | 1.9 | 29        |
| 7  | Magnetic Isolation of Cancer-Derived Exosomes Using Fe/Au Magnetic Nanowires. ACS Applied Nano<br>Materials, 2020, 3, 2058-2069.                                  | 2.4 | 26        |
| 8  | Fabrication of Long-Range Ordered Aluminum Oxide and Fe/Au Multilayered Nanowires for 3-D<br>Magnetic Memory. IEEE Transactions on Magnetics, 2020, 56, 1-6.      | 1.2 | 19        |
| 9  | Magnetic Vortex and Hyperthermia Suppression in Multigrain Iron Oxide Nanorings. Applied Sciences<br>(Switzerland), 2020, 10, 787.                                | 1.3 | 17        |
| 10 | Investigating spin coupling across a three-dimensional interface in core/shell magnetic nanoparticles.<br>Physical Review Materials, 2020, 4, .                   | 0.9 | 13        |
| 11 | Development of a Biolabeling System Using Ferromagnetic Nanowires. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2019, 3, 134-142. | 2.3 | 18        |
| 12 | Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles. Physics of the Solid State, 2018, 60, 382-389.                                                           | 0.2 | 15        |
| 13 | Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. Journal of Physical Chemistry C, 2018, 122, 2367-2381.               | 1.5 | 178       |
| 14 | Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study.<br>Journal of Electronic Materials, 2017, 46, 3764-3769.             | 1.0 | 29        |
| 15 | Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: Does size matter?. Journal of Alloys and Compounds, 2017, 714, 709-714.                          | 2.8 | 53        |
| 16 | Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems. Nanomaterials, 2016, 6, 221.                                                                      | 1.9 | 124       |
| 17 | Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. Journal of Applied Physics, 2016, 119, .      | 1.1 | 28        |
| 18 | Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. Journal of Physical Chemistry C, 2016, 120, 8370-8379.                   | 1.5 | 153       |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia?. RSC<br>Advances, 2016, 6, 38697-38702.                                                                                                              | 1.7 | 53        |
| 20 | Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. Journal of Physical<br>Chemistry C, 2016, 120, 10086-10093.                                                                                                         | 1.5 | 209       |
| 21 | Remotely Controlled Micromanipulation by Buckling Instabilities in Fe <sub>3</sub> O <sub>4</sub><br>Nanoparticle Embedded Poly( <i>N</i> -isopropylacrylamide) Surface Arrays. ACS Applied Materials<br>& Interfaces, 2016, 8, 28012-28018. | 4.0 | 3         |
| 22 | Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. Journal of Applied Physics, 2015, 117, .                                                                     | 1.1 | 103       |
| 23 | From core/shell to hollow Fe/ <i>l̂³</i> -Fe <sub>2</sub> O <sub>3</sub> nanoparticles: evolution of the magnetic behavior. Nanotechnology, 2015, 26, 405705.                                                                                | 1.3 | 33        |
| 24 | FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia. Journal of Applied Physics, 2015, 117, .                                                                                                  | 1.1 | 83        |
| 25 | Impacts of surface spins and inter-particle interactions on the magnetism of hollow γ-Fe2O3 nanoparticles. Journal of Applied Physics, 2014, 115, .                                                                                          | 1.1 | 14        |
| 26 | Laser Target Evaporation Fe <sub>2</sub> O <sub>3</sub> Nanoparticles for<br>Water-Based Ferrofluids for Biomedical Applications. IEEE Transactions on Magnetics, 2014, 50, 1-4.                                                             | 1.2 | 25        |