
## Johnathan D Tune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597888/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Flipped classroom model improves graduate student performance in cardiovascular, respiratory, and<br>renal physiology. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 316-320.                               | 0.8 | 367       |
| 2  | Cardiovascular consequences of metabolic syndrome. Translational Research, 2017, 183, 57-70.                                                                                                                                               | 2.2 | 307       |
| 3  | Matching coronary blood flow to myocardial oxygen consumption. Journal of Applied Physiology, 2004, 97, 404-415.                                                                                                                           | 1.2 | 276       |
| 4  | Regulation of Coronary Blood Flow. , 2017, 7, 321-382.                                                                                                                                                                                     |     | 198       |
| 5  | Hydrogen Peroxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2614-2621.                                                                                                                                                | 1.1 | 164       |
| 6  | Control of Coronary Blood Flow during Exercise. Experimental Biology and Medicine, 2002, 227, 238-250.                                                                                                                                     | 1.1 | 99        |
| 7  | H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+<br>channels. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2473-H2482.                                     | 1.5 | 89        |
| 8  | Role of potassium channels in coronary vasodilation. Experimental Biology and Medicine, 2010, 235,<br>10-22.                                                                                                                               | 1.1 | 81        |
| 9  | Impaired function of coronary BK <sub>Ca</sub> channels in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1629-H1637.                                                                  | 1.5 | 77        |
| 10 | Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during<br>exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H74-H84.                                         | 1.5 | 74        |
| 11 | Feedforward sympathetic coronary vasodilation in exercising dogs. Journal of Applied Physiology, 2000, 89, 1892-1902.                                                                                                                      | 1.2 | 73        |
| 12 | Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary<br>circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291,<br>H2997-H3002.                        | 1.5 | 73        |
| 13 | Role of Nitric Oxide and Adenosine in Control of Coronary Blood Flow in Exercising Dogs.<br>Circulation, 2000, 101, 2942-2948.                                                                                                             | 1.6 | 65        |
| 14 | Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. Journal of Applied Physiology, 2012, 113, 1128-1140.                                                                    | 1.2 | 64        |
| 15 | KATP + channels, nitric oxide, and adenosine are not required for local metabolic coronary<br>vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H868-H875.                                       | 1.5 | 63        |
| 16 | Coronary arteriolar vasoconstriction to angiotensin II is augmented in prediabetic metabolic<br>syndrome via activation of AT1 receptors. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 288, H2154-H2162.    | 1.5 | 59        |
| 17 | Leptin resistance extends to the coronary vasculature in prediabetic dogs and provides a protective adaptation against endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1038-H1046. | 1.5 | 57        |
| 18 | Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization. Basic Research in Cardiology, 2019, 114, 25.                   | 2.5 | 57        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Altered Mechanism of Adenosine-Induced Coronary Arteriolar Dilation in Early-Stage Metabolic<br>Syndrome. Experimental Biology and Medicine, 2009, 234, 683-692.                                                                 | 1.1 | 52        |
| 20 | Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow.<br>Journal of Molecular and Cellular Cardiology, 2012, 52, 912-919.                                                                   | 0.9 | 48        |
| 21 | Coronary blood flow regulation in the prediabetic metabolic syndrome. Basic Research in Cardiology, 2003, 98, 416-423.                                                                                                           | 2.5 | 45        |
| 22 | Experimental animal models of coronary microvascular dysfunction. Cardiovascular Research, 2020, 116, 756-770.                                                                                                                   | 1.8 | 43        |
| 23 | Endogenous Adiposeâ€Derived Factors Diminish Coronary Endothelial Function via Inhibition of Nitric<br>Oxide Synthase. Microcirculation, 2008, 15, 417-426.                                                                      | 1.0 | 41        |
| 24 | Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic<br>syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H966-H973.                               | 1.5 | 39        |
| 25 | Perivascular Adipose Tissue and Coronary Vascular Disease. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 2014, 34, 1643-1649.                                                                                           | 1.1 | 39        |
| 26 | Control of Coronary Blood Flow During Hypoxemia. Advances in Experimental Medicine and Biology, 2007, 618, 25-39.                                                                                                                | 0.8 | 36        |
| 27 | Role of K <sub>ATP</sub> <sup>+</sup> channels and adenosine in the control of coronary blood flow during exercise. Journal of Applied Physiology, 2000, 89, 529-536.                                                            | 1.2 | 35        |
| 28 | Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation.<br>Basic Research in Cardiology, 2012, 107, 264.                                                                                | 2.5 | 35        |
| 29 | Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K <sup>+</sup> Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1393-1400. | 1.1 | 35        |
| 30 | Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior. Basic<br>Research in Cardiology, 2018, 113, 33.                                                                                        | 2.5 | 34        |
| 31 | Sensitization of Coronary α -Adrenoceptor Vasoconstriction in the Prediabetic Metabolic Syndrome.<br>Microcirculation, 2006, 13, 587-595.                                                                                        | 1.0 | 31        |
| 32 | Insulin improves contractile function during moderate ischemia in canine left ventricle. American<br>Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1574-H1581.                                           | 1.5 | 29        |
| 33 | Coronary Vasomotor Reactivity to Endothelin-1 in the Prediabetic Metabolic Syndrome.<br>Microcirculation, 2006, 13, 209-218.                                                                                                     | 1.0 | 24        |
| 34 | Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency<br>in Obese Swine After Myocardial Infarction. Diabetes, 2017, 66, 2230-2240.                                                | 0.3 | 24        |
| 35 | Effects of leptin on cardiovascular physiology. Journal of the American Society of Hypertension, 2007, 1, 231-241.                                                                                                               | 2.3 | 23        |
| 36 | Leptin augments coronary vasoconstriction and smooth muscle proliferation via a<br>Rho-kinase-dependent pathway. Basic Research in Cardiology, 2016, 111, 25.                                                                    | 2.5 | 23        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Research in Cardiology, 2016, 111, 43.                                                    | 2.5 | 21        |
| 38 | Role of K ATP + channels in local metabolic coronary vasodilation. American Journal of Physiology -<br>Heart and Circulatory Physiology, 1999, 277, H2115-H2123.                                                                | 1.5 | 20        |
| 39 | Coronary blood flow control is impaired at rest and during exercise in conscious diabetic dogs. Basic<br>Research in Cardiology, 2002, 97, 248-257.                                                                             | 2.5 | 20        |
| 40 | Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Research in Cardiology, 2016, 111, 56.                                                                                                    | 2.5 | 20        |
| 41 | α-Adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in experimental diabetes mellitus. Journal of Applied Physiology, 2004, 97, 431-438.                                                             | 1.2 | 18        |
| 42 | ATP-Dependent K+ Channels Contribute to Local Metabolic Coronary Vasodilation in Experimental<br>Diabetes. Diabetes, 2002, 51, 1201-1207.                                                                                       | 0.3 | 17        |
| 43 | K <sub>V</sub> 7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H693-H704. | 1.5 | 17        |
| 44 | Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm.<br>Cardiovascular Research, 2014, 103, 607-618.                                                                             | 1.8 | 14        |
| 45 | Disentangling the Gordian knot of local metabolic control of coronary blood flow. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H11-H24.                                                     | 1.5 | 14        |
| 46 | Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome. Atherosclerosis, 2016, 249, 1-9.                                    | 0.4 | 13        |
| 47 | Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K+<br>channels. Basic Research in Cardiology, 2017, 112, 65.                                                                   | 2.5 | 13        |
| 48 | Comparison of isoflurane and α-chloralose in an anesthetized swine model of acute pulmonary embolism producing right ventricular dysfunction. Comparative Medicine, 2015, 65, 54-61.                                            | 0.4 | 13        |
| 49 | Endogenous nitric oxide modulates myocardial oxygen consumption in canine right ventricle.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H831-H837.                                          | 1.5 | 9         |
| 50 | Effect of Renal Shock Wave Lithotripsy on the Development of Metabolic Syndrome in a Juvenile Swine<br>Model: A Pilot Study. Journal of Urology, 2015, 193, 1409-1416.                                                          | 0.2 | 8         |
| 51 | Combination GLP-1 and Insulin Treatment Fails to Alter Myocardial Fuel Selection vs. Insulin Alone in<br>Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3456-3465.                               | 1.8 | 5         |
| 52 | Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels. Basic Research in Cardiology, 2021, 116, 35.                                            | 2.5 | 5         |
| 53 | Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and<br>Regeneration. Journal of Cardiovascular Development and Disease, 2021, 8, 125.                                             | 0.8 | 5         |
| 54 | Repeat cross-sectional data on the progression of the metabolic syndrome in Ossabaw miniature swine. Data in Brief, 2016, 7, 1393-1395.                                                                                         | 0.5 | 3         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Distinct hemodynamic responses to (pyr)apelin-13 in large animal models. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2020, 318, H747-H755.                                             | 1.5 | 3         |
| 56 | Multiscale model of the physiological control of myocardial perfusion to delineate putative metabolic feedback mechanisms. Journal of Physiology, 2022, 600, 1913-1932.                                          | 1.3 | 3         |
| 57 | Small-Group Activity to Reinforce the Impact of Valvular Defects and Heart Failure on Cardiac<br>Pressure-Volume Relationships. MedEdPORTAL: the Journal of Teaching and Learning Resources, 2018,<br>14, 10675. | 0.5 | 2         |
| 58 | ROCK as a molecular bond connecting coronary microvascular and cardiac remodelling.<br>Cardiovascular Research, 2017, 113, 1273-1275.                                                                            | 1.8 | 1         |
| 59 | Perivascular adipose tissue impairs coronary endothelial function via protein kinase Câ€beta dependent<br>phosphorylation of nitric oxide synthase. FASEB Journal, 2008, 22, 743.9.                              | 0.2 | 1         |
| 60 | Adaptations in the balance between coronary blood flow and myocardial metabolism in endurance athletes. Journal of Physiology, 2008, 586, 5043-5043.                                                             | 1.3 | 0         |
| 61 | Dynamic Regulation of the Subunit Composition of BK Channels in Smooth Muscle. Circulation Research, 2017, 121, 594-595.                                                                                         | 2.0 | Ο         |
| 62 | Smooth Muscle Contraction Is Regulated by Chloride Channels: Functional Evidence for TMEM16A in Porcine Coronary Arteries. FASEB Journal, 2021, 35, .                                                            | 0.2 | 0         |
| 63 | PERIVASCULAR ADIPOSE TISSUE ALTERS CORONARY ARTERIAL SMOOTH MUSCLE AND ENDOTHELIAL FUNCTION. FASEB Journal, 2007, 21, A1228.                                                                                     | 0.2 | Ο         |
| 64 | Impaired contribution of voltageâ€dependent K + channels to ischemic coronary vasodilation in<br>Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.3.                                         | 0.2 | 0         |
| 65 | Role of large conductance Ca 2+ â€activated K + (BK Ca ) channels in local metabolic coronary vasodilation in Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.4.                            | 0.2 | 0         |
| 66 | Functional expression of P2Y 1 purinergic receptors in the coronary circulation. FASEB Journal, 2010, 24, 1034.11.                                                                                               | 0.2 | 0         |
| 67 | Epicardial perivascular adipose tissue exacerbates coronary endothelial dysfunction in metabolic syndrome via leptinâ€induced activation of PKCâ€Î². FASEB Journal, 2010, 24, 978.5.                             | 0.2 | Ο         |
| 68 | Contribution of Adenosine A 2A and A 2B Receptor Subtypes to Coronary Reactive Hyperemia: Role of K<br>V and K ATP Channels. FASEB Journal, 2010, 24, 1034.8.                                                    | 0.2 | 0         |
| 69 | Contribution of IKCa Channels to the Control of Coronary Blood Flow. FASEB Journal, 2011, 25, 1025.6.                                                                                                            | 0.2 | Ο         |
| 70 | The effects of Type 1 diabetes on colon smooth muscle. FASEB Journal, 2011, 25, 1123.1.                                                                                                                          | 0.2 | 0         |
| 71 | Augmented coronary vasoconstriction to epicardial perivascular adipose tissue in metabolic syndrome. FASEB Journal, 2012, 26, 866.11.                                                                            | 0.2 | 0         |
| 72 | Contribution of Cav1.2 Channels to Coronary Microvascular Dysfunction in Metabolic Syndrome.<br>FASEB Journal, 2012, 26, 860.16.                                                                                 | 0.2 | 0         |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Contribution of Voltageâ€Dependent Potassium & Calcium Channels to Coronary Pressureâ€Flow<br>Autoregulation. FASEB Journal, 2012, 26, 1055.12.                                    | 0.2 | 0         |
| 74 | Dysfunction of coronary smooth muscle Ca 2+ regulation in the progression of metabolic syndrome and coronary artery disease in Ossabaw miniature swine. FASEB Journal, 2012, 26, . | 0.2 | 0         |
| 75 | Cardiac responses to intravenous glucagonâ€like peptide 1 are impaired in metabolic syndrome. FASEB<br>Journal, 2012, 26, .                                                        | 0.2 | 0         |
| 76 | Role of Voltageâ€dependent Kv7 Channels in the Regulation of Coronary Blood Flow. FASEB Journal, 2013, 27, 1185.4.                                                                 | 0.2 | 0         |
| 77 | Role of Hydrogen Sulfide in the Regulation of Coronary Blood Flow. FASEB Journal, 2013, 27, 1185.3.                                                                                | 0.2 | 0         |
| 78 | Coronary Vascular Effects of Leptin and Calpastatin in Lean vs. Obese Hearts. FASEB Journal, 2015, 29, 644.5.                                                                      | 0.2 | 0         |
| 79 | Inhibition of Sodium Glucose Cotransporterâ€2 Preserves Cardiac Function during Regional Myocardial<br>Ischemia via a Frankâ€5tarling Mechanism. FASEB Journal, 2018, 32, .        | 0.2 | 0         |
| 80 | Hypoxemia Augments the Local Metabolic Error Signal and Improves Coronary Pressureâ€Flow<br>Autoregulation. FASEB Journal, 2022, 36, .                                             | 0.2 | 0         |