Willie Peijnenburg

List of Publications by Citations

Source: https://exaly.com/author-pdf/8597815/willie-peijnenburg-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 361
 12,420
 57
 95

 papers
 citations
 h-index
 g-index

 378
 14,463
 7.1
 6.68

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
361	Nano-silver 🗈 review of available data and knowledge gaps in human and environmental risk assessment. <i>Nanotoxicology</i> , 2009 , 3, 109-138	5.3	943
360	An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. <i>Chemosphere</i> , 2005 , 59, 511-24	8.4	375
359	Internal metal sequestration and its ecotoxicological relevance: a review. <i>Environmental Science & Environmental & Environmen</i>	10.3	346
358	Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. <i>Ecotoxicology and Environmental Safety</i> , 2003 , 56, 63-77	7	248
357	Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. <i>Ecotoxicology and Environmental Safety</i> , 2007 , 67, 163-79	7	242
356	Occurrence of phthalate esters in the environment of The Netherlands. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 63, 204-15	7	242
355	Bioaccumulation of heavy metals in terrestrial invertebrates. <i>Environmental Pollution</i> , 2001 , 113, 385-9.	39.3	206
354	Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. <i>Nature Sustainability</i> , 2020 , 3, 929-937	22.1	191
353	Equilibrium partitioning of heavy metals in dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 2470-2478	3.8	157
352	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 2084-2134	4 ^{11.1}	145
351	Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. <i>Ecotoxicology and Environmental Safety</i> , 1999 , 44, 294-310	7	145
350	A conceptual framework for implementation of bioavailability of metals for environmental management purposes. <i>Ecotoxicology and Environmental Safety</i> , 1997 , 37, 163-72	7	142
349	From Bioavailability Science to Regulation of Organic Chemicals. <i>Environmental Science & Emp;</i> Technology, 2015 , 49, 10255-64	10.3	139
348	Physicochemical Properties and Aquatic Toxicity of Poly- and Perfluorinated Compounds. <i>Critical Reviews in Environmental Science and Technology</i> , 2013 , 43, 598-678	11.1	129
347	Predicting SoillWater Partition Coefficients for Cadmium. <i>Environmental Science & Environmental Scien</i>	10.3	129
346	Natural colloids are the dominant factor in the sedimentation of nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1019-22	3.8	124
345	Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. <i>Environmental Science</i> & amp; Technology, 2015 , 49, 4657-64	10.3	122

(2012-2013)

344	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. <i>Regulatory Toxicology and Pharmacology</i> , 2013 , 67, 506-30	3.4	121
343	Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 2479-2488	3.8	118
342	Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. <i>Environment International</i> , 2002 , 28, 401-10	12.9	118
341	Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. <i>Aquatic Toxicology</i> , 2017 , 190, 40-45	5.1	110
340	Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. <i>Environmental Science & Environmental </i>	10.3	106
339	Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 13415-34	4.6	104
338	Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. <i>Environment International</i> , 2011 , 37, 1098-104	12.9	95
337	Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. <i>Environmental Science & Environmental Sci</i>	10.3	95
336	Prediction of metal bioavailability in Dutch field soils for the oligochaete Enchytraeus crypticus. <i>Ecotoxicology and Environmental Safety</i> , 1999 , 43, 170-86	7	90
335	Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1482-7	3.8	89
334	Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. <i>Environmental Science: Nano</i> , 2016 , 3, 323-345	7.1	86
333	Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: effects of solution ionic strength and composition. <i>Water Research</i> , 2011 , 45, 5905-15	12.5	86
332	Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 807-14	3.8	85
331	Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. <i>Archives of Environmental Contamination and Toxicology</i> , 2000 , 39, 420-30	3.2	85
330	A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). <i>Environment International</i> , 2013 , 51, 116-40	12.9	83
329	Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. <i>Nanotoxicology</i> , 2015 , 9, 1041-9	5.3	80
328	Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. <i>Nanotoxicology</i> , 2016 , 10, 1442-1447	5.3	80
327	Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2408-13	3.8	78

326	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 5024-5038	5.7	77
325	Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2859-68	3.8	76
324	Plasma membrane surface potential: dual effects upon ion uptake and toxicity. <i>Plant Physiology</i> , 2011 , 155, 808-20	6.6	75
323	Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. <i>Environmental Science & Environmental Science & E</i>	10.3	73
322	Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. <i>Nanotoxicology</i> , 2014 , 8, 383-93	5.3	73
321	Modeling lifetime and degradability of organic compounds in air, soil, and water systems (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2001 , 73, 1331-1348	2.1	73
320	Prediction of biodegradability from chemical structure: Modeling of ready biodegradation test data. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 1763-1768	3.8	73
319	Frameworks and tools for risk assessment of manufactured nanomaterials. <i>Environment International</i> , 2016 , 95, 36-53	12.9	73
318	Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. <i>Environmental Pollution</i> , 2018 , 239, 689-697	9.3	70
317	Considerations for Safe Innovation: The Case of Graphene. <i>ACS Nano</i> , 2017 , 11, 9574-9593	16.7	68
316	Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). <i>Ecotoxicology and Environmental Safety</i> , 2003 , 54, 277-89	7	68
315	Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. <i>Environmental Pollution</i> , 2014 , 188, 144-52	9.3	65
314	New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. <i>Environmental Science & Environmental Sc</i>	10.3	65
313	How should the completeness and quality of curated nanomaterial data be evaluated?. <i>Nanoscale</i> , 2016 , 8, 9919-43	7.7	65
312	Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. <i>Science of the Total Environment</i> , 2018 , 625, 1021-1029	10.2	64
311	Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 75, 1-7	7	62
310	A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. <i>Chemosphere</i> , 2015 , 139, 181-9	8.4	61
309	The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. <i>Environmental Pollution</i> , 2018 , 232, 212-219	9.3	61

308	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. <i>Nature Nanotechnology</i> , 2017 , 12, 727-733	28.7	61	
307	Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1774-82	3.8	60	
306	Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. <i>Science of the Total Environment</i> , 2018 , 644, 1070-1079	10.2	59	
305	Extraction and Fractionation Methods for Exposure Assessment of Trace Metals, Metalloids, and Hazardous Organic Compounds in Terrestrial Environments. <i>Critical Reviews in Environmental Science and Technology</i> , 2012 , 42, 1117-1171	11.1	57	
304	Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. <i>Environmental Science: Nano</i> , 2018 , 5, 904-916	7.1	54	
303	How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1284	3.8	52	
302	Passive sampling methods for contaminated sediments: state of the science for metals. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 179-96	2.5	50	
301	Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. <i>Environmental Pollution</i> , 2005 , 133, 103-16	9.3	49	
300	Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight?. <i>Environmental Pollution</i> , 2001 , 114, 137-43	9.3	48	
299	Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition. <i>Journal of Colloid and Interface Science</i> , 2011 , 360, 398-407	9.3	47	
298	Added risk approach to derive maximum permissible concentrations for heavy metals: how to take natural background levels into account. <i>Ecotoxicology and Environmental Safety</i> , 1997 , 37, 112-8	7	47	
297	Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 7405-21	5.1	46	
296	QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems. <i>Environmental Toxicology and Chemistry</i> , 1992 , 11, 301-314	3.8	46	
295	A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. <i>Nanotoxicology</i> , 2017 , 11, 87-97	5.3	45	
294	Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward. <i>Environmental Pollution</i> , 2016 , 218, 1365-1369	9.3	45	
293	Toxicological mixture models are based on inadequate assumptions. <i>Environmental Science & Technology</i> , 2010 , 44, 4841-2	10.3	44	
292	Evaluation of Exposure Metrics for Effect Assessment of Soil Invertebrates. <i>Critical Reviews in Environmental Science and Technology</i> , 2012 , 42, 1862-1893	11.1	44	
291	Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. <i>Environmental Pollution</i> , 2018 , 233, 633-641	9.3	44	

290	Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. <i>Environment International</i> , 2019 , 126, 268-278	12.9	43
289	The clearwater consensus: the estimation of metal hazard in fresh water. <i>International Journal of Life Cycle Assessment</i> , 2010 , 15, 143-147	4.6	43
288	Silver Nanoparticles, Ions, and Shape Governing Soil Microbial Functional Diversity: Nano Shapes Micro. <i>Frontiers in Microbiology</i> , 2016 , 7, 1123	5.7	43
287	A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 119, 66-73	7	42
286	Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 355-9	3.8	42
285	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. <i>International Journal of Life Cycle Assessment</i> , 2011 , 16, 774	4.6	42
284	Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 712-720	3.8	42
283	Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. <i>Nanotoxicology</i> , 2018 , 12, 423-438	5.3	41
282	PBT assessment using the revised annex XIII of REACH: a comparison with other regulatory frameworks. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 359-71	2.5	41
281	Structure Epecificity relationships for haloalkane dehalogenases. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2681-2689	3.8	40
280	Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. <i>Nanotoxicology</i> , 2015 , 9, 792-801	5.3	39
279	Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1239-45	3.8	39
278	Facilitated Transport of Copper with Hydroxyapatite Nanoparticles in Saturated Sand. <i>Soil Science Society of America Journal</i> , 2012 , 76, 375-388	2.5	39
277	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. <i>Environmental Pollution</i> , 2007 , 146, 428-36	9.3	39
276	Rethinking Nano-TiO Safety: Overview of Toxic Effects in Humans and Aquatic Animals. <i>Small</i> , 2020 , 16, e2002019	11	39
275	Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. <i>Environmental Pollution</i> , 2017 , 221, 351-358	9.3	38
274	Investigation of Rhizospheric Microbial Communities in Wheat, Barley, and Two Rice Varieties at the Seedling Stage. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 2645-2653	5.7	38
273	Assessment of QSARS for Predicting Fate and Effects of Chemicals in the Environment: An International European Project. <i>SAR and QSAR in Environmental Research</i> , 1995 , 3, 223-36	3.5	38

(2013-1994)

272	Structure-activity relationships for biodegradation: A critical review. <i>Pure and Applied Chemistry</i> , 1994 , 66, 1931-1941	2.1	38
271	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2955-2971	3.8	38
270	Towards Nanowire Tandem Junction Solar Cells on Silicon. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 733-74	49 .7	37
269	The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 15007-21	4.6	37
268	Comparative toxicity of copper nanoparticles across three Lemnaceae species. <i>Science of the Total Environment</i> , 2015 , 518-519, 217-24	10.2	35
267	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. <i>Environmental Science: Nano</i> , 2020 , 7, 351-367	7.1	35
266	Modeling toxicity of binary metal mixtures ($Cu(2+)$ - $Ag(+)$, $Cu(2+)$ - $Zn(2+)$) to lettuce, Lactuca sativa, with the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 137-43	3.8	35
265	Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. <i>Chemosphere</i> , 1999 , 38, 1409-17	8.4	35
264	A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121429	12.8	35
263	Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. <i>Science of the Total Environment</i> , 2016 , 563-564, 81-8	10.2	35
262	Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. <i>Science of the Total Environment</i> , 2019 , 660, 1283-1293	10.2	35
261	Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. <i>Environmental Pollution</i> , 2020 , 261, 114117	9.3	34
260	Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. <i>Chemosphere</i> , 2001 , 42, 263-70	8.4	34
259	Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. <i>Environmental Science & Environmental Sci</i>	10.3	34
258	C60-DOM interactions and effects on C60 apparent solubility: a molecular mechanics and density functional theory study. <i>Environment International</i> , 2011 , 37, 1078-82	12.9	33
257	Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. Journal of Hazardous Materials, 2020 , 386, 121975	12.8	33
256	Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: Efficiencies and mechanisms. <i>Environmental Research</i> , 2020 , 186, 109554	7.9	32
255	Possibilities of implementation of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework. <i>Journal of Hazardous Materials</i> , 2013 , 261, 833-9	12.8	32

254	Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis. <i>Science of the Total Environment</i> , 2013 , 456-457, 307-16	10.2	32
253	Evaluating the Combined Toxicity of Cu and ZnO Nanoparticles: Utility of the Concept of Additivity and a Nested Experimental Design. <i>Environmental Science & Experimental Science & Ex</i>	10.3	32
252	Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals:Iontaminated soil after washing with biodegradable chelators. <i>Journal of Cleaner Production</i> , 2018 , 197, 479-490	10.3	32
251	Health Risks Awareness of Electronic Waste Workers in the Informal Sector in Nigeria. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	31
250	Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2084-93	3.8	31
249	Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 57, 718-24	3.2	31
248	The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. <i>Chemosphere</i> , 1998 , 37, 1169-1186	8.4	31
247	Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. <i>Journal of Hazardous Materials</i> , 2013 , 261, 854-62	12.8	30
246	Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. <i>Journal of Environmental Sciences</i> , 2021 , 99, 1-9	6.4	30
245	Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. <i>Food and Chemical Toxicology</i> , 2018 , 112, 507-517	4.7	30
244	Environmental Risk Assessment Strategy for Nanomaterials. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	29
243	Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model. <i>Environmental Science & Eamp; Technology</i> , 2013 , 47, 4796-803	10.3	29
242	Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. <i>Science of the Total Environment</i> , 2000 , 246, 11-20	10.2	29
241	Impact of water chemistry on the behavior and fate of copper nanoparticles. <i>Environmental Pollution</i> , 2018 , 234, 684-691	9.3	28
240	Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 80, 273-9	7	28
239	Quantitative structure-property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. <i>Chemosphere</i> , 2001 , 43, 235-41	8.4	28
238	Reductive transformations of halogenated aromatic hydrocarbons in anaerobic water-sediment systems: Kinetics, mechanisms and products. <i>Environmental Toxicology and Chemistry</i> , 1992 , 11, 289-300	3.8	28
237	Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 712-20	3.8	28

236	Acute toxicity of poly- and perfluorinated compounds to two cladocerans, Daphnia magna and Chydorus sphaericus. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 605-10	3.8	27	
235	Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 145, 349-358	7	27	
234	A practical approach to determine dose metrics for nanomaterials. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1015-22	3.8	27	
233	Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1788-1796	7.5	27	
232	Underlying issues including approaches and information needs in risk assessment. <i>Ecotoxicology and Environmental Safety</i> , 2003 , 56, 6-19	7	27	
231	Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. <i>Injury Prevention</i> , 2018 , 24, 185-192	3.2	26	
230	Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. <i>Science of the Total Environment</i> , 2018 , 610-611, 1329-1335	10.2	26	
229	Determining the fluxes of ions (Pb2+, Cu2+ and Cd2+) at the root surface of wetland plants using the scanning ion-selective electrode technique. <i>Plant and Soil</i> , 2017 , 414, 1-12	4.2	26	
228	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. <i>Chemosphere</i> , 2011 , 82, 268-77	8.4	26	
227	Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. <i>Plant and Soil</i> , 2010 , 334, 277-288	4.2	26	
226	Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: Independent action surpasses concentration addition. <i>Chemosphere</i> , 2016 , 156, 8-13	8.4	26	
225	Impact of imidacloprid on Daphnia magna under different food quality regimes. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 621-31	3.8	25	
224	Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu[]+-Zn[]+ and Cu[]+-Ag+). <i>Environmental Pollution</i> , 2013 , 176, 185-92	9.3	25	
223	Experimental assessment of the environmental fate and effects of triazoles and benzotriazole. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 65-75	2.1	25	
222	Development of an electrostatic model predicting copper toxicity to plants. <i>Journal of Experimental Botany</i> , 2012 , 63, 659-68	7	25	
221	Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 767-	7 <i>3</i> ^{.8}	25	
220	Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 350-356	4.3	24	
219	Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. <i>Environmental Pollution</i> , 2019 , 255, 113304	9.3	24	

218	Interactive effects of rice straw biochar and FAlO on immobilization of Zn. <i>Journal of Hazardous Materials</i> , 2019 , 373, 250-257	12.8	24
217	Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength. <i>Chemosphere</i> , 2019 , 226, 841-850	8.4	24
216	Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: Applicability for toxicity prediction by (Q)SARs. <i>ATLA Alternatives To Laboratory Animals</i> , 2015 , 43, 221-40	2.1	24
215	A QICAR approach for quantifying binding constants for metal-ligand complexes. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 1036-42	7	24
214	On the Usefulness and Reliability of Existing QSBRs for Risk Assessment and Priority Setting. <i>SAR</i> and QSAR in Environmental Research, 1996 , 5, 1-16	3.5	24
213	Development of nanostructureEctivity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making. <i>RSC Advances</i> , 2016 , 6, 52227-52235	3 .7	24
212	Assessing toxicity of copper nanoparticles across five cladoceran species. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1863-9	3.8	23
211	Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. <i>Food and Chemical Toxicology</i> , 2018 , 112, 563-570	4.7	23
210	Simple in vitro models can predict pulmonary toxicity of silver nanoparticles. <i>Nanotoxicology</i> , 2016 , 10, 770-9	5.3	23
209	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
208	Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. <i>Environmental Science & Environmental &</i>	10.3	23
207	The effect of capping agents on the toxicity of silver nanoparticles to Danio rerio embryos. <i>Nanotoxicology</i> , 2019 , 13, 1-13	5.3	22
206	Pathways of root uptake and membrane transport of Cd in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1038-1046	3.8	22
205	Insights into the transcriptional responses of a microbial community to silver nanoparticles in a freshwater microcosm. <i>Environmental Pollution</i> , 2020 , 258, 113727	9.3	22
204	Impact of CeO nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: Importance of surface functionalization and solution chemistry. <i>Water Research</i> , 2020 , 186, 116324	12.5	22
203	The biodistribution and immuno-responses of differently shaped non-modified gold particles in zebrafish embryos. <i>Nanotoxicology</i> , 2019 , 13, 558-571	5.3	21
202	Impact of informal electronic waste recycling on metal concentrations in soils and dusts. <i>Environmental Research</i> , 2018 , 164, 385-394	7.9	21
201	Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. <i>Water Research</i> , 2019 , 166, 115083	12.5	21

200	Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids. <i>Chemosphere</i> , 2017 , 185, 681-689	8.4	21
199	External validation of EPIWIN biodegradation models. <i>SAR and QSAR in Environmental Research</i> , 2005 , 16, 135-48	3.5	21
198	Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). <i>Science of the Total Environment</i> , 2001 , 269, 163-70	10.2	21
197	The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. <i>Water Research</i> , 2021 , 190, 116742	12.5	21
196	Quantitative structure-activity relationships for green algae growth inhibition by polymer particles. <i>Chemosphere</i> , 2017 , 179, 49-56	8.4	20
195	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. <i>Environmental Science: Nano</i> , 2019 , 6, 505-518	7.1	20
194	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. <i>Sustainability</i> , 2018 , 10, 689	3.6	20
193	Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. <i>Chemosphere</i> , 2019 , 235, 900-907	8.4	20
192	Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models. <i>Ecotoxicology</i> , 2014 , 23, 385-95	2.9	20
191	Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.). <i>Chemosphere</i> , 2014 , 112, 282-8	8.4	20
190	Evaluation of an electrostatic toxicity model for predicting Ni(2+) toxicity to barley root elongation in hydroponic cultures and in soils. <i>New Phytologist</i> , 2011 , 192, 414-27	9.8	20
189	Impact of pH on Cu accumulation kinetics in earthworm cytosol. <i>Environmental Science & Environmental </i>	10.3	20
188	Transport, Accumulation and Transformation Processes 2007 , 73-158		20
187	Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). <i>Archives of Environmental Contamination and Toxicology</i> , 2012 , 62, 49-55	3.2	19
186	Metal-specific interactions at the interface of chemistry and biology. <i>Pure and Applied Chemistry</i> , 2007 , 79, 2351-2366	2.1	19
185	A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. <i>Environmental Science: Nano</i> , 2019 , 6, 2049-2060	7.1	18
184	Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica. <i>Chemosphere</i> , 2015 , 135, 123-8	8.4	18
183	Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 19213-23	5.1	18

182	Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. <i>Journal of Cleaner Production</i> , 2018 , 178, 494-506	10.3	18
181	TiO2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio). <i>NanoImpact</i> , 2016 , 2, 45-53	5.6	18
180	An electrostatic model predicting Cu and Ni toxicity to microbial processes in soils. <i>Soil Biology and Biochemistry</i> , 2013 , 57, 720-730	7.5	18
179	Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. <i>Water Research</i> , 2017 , 127, 59-67	12.5	17
178	Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for photohydrolysis quantum yields of substituted aromatic halides. <i>Chemosphere</i> , 1998 , 36, 2833-2853	8.4	17
177	Minimum requirements for reporting analytical data for environmental samples (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2003 , 75, 1097-1106	2.1	17
176	Implementation of bioavailability in standard setting and risk assessment?. <i>Journal of Soils and Sediments</i> , 2002 , 2, 169-173	3.4	17
175	Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. <i>Water Research</i> , 2020 , 186, 116410	12.5	17
174	Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. <i>Journal of Industrial Ecology</i> , 2020 , 24, 193-204	7.2	17
173	Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	16
172	Elucidating Toxicodynamic Differences at the Molecular Scale between ZnO Nanoparticles and ZnCl in via Nontargeted Metabolomics. <i>Environmental Science & Environmental Scienc</i>	10.3	16
171	A framework for deciding on the inclusion of emerging impacts in life cycle impact assessment. <i>Journal of Cleaner Production</i> , 2014 , 78, 152-163	10.3	16
170	A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. <i>Materials</i> , 2017 , 10,	3.5	16
169	Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	16
168	Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species?. <i>Ecotoxicology</i> , 2014 , 23, 21-32	2.9	16
167	A quantitative structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water. <i>Chemosphere</i> , 1993 , 26, 837-849	8.4	16
166	Interactions of CeO nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121973	12.8	16
165	Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 155-162	4.3	15

(2020-2015)

164	Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 37-44	7	15	
163	Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. <i>Nanomaterials</i> , 2020 , 10,	5.4	15	
162	The effect of pesticides on the composition of aquatic macrofauna communities in field ditches. <i>Basic and Applied Ecology</i> , 2016 , 17, 125-133	3.2	15	
161	Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. <i>Journal of Hazardous Materials</i> , 2018 , 358, 216-221	12.8	15	
160	Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields. <i>Environmental Pollution</i> , 2014 , 192, 196-203	9.3	15	
159	Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida. <i>Soil Biology and Biochemistry</i> , 2010 , 42, 1045-1050	7.5	15	
158	The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. <i>Chemosphere</i> , 2003 , 52, 1153-62	8.4	15	
157	Photokinetics of Azaarenes and Toxicity of Phototransformation Products to the Marine DiatomPhaeodactylum tricornutum. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	15	
156	QSARs for oxidation of phenols in the aqueous environment, suitable for risk assessment. <i>Journal of Chemometrics</i> , 1996 , 10, 79-93	1.6	15	
155	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. <i>Communications Biology</i> , 2020 , 3, 737	6.7	14	
154	Directions in QPPR development to complement the predictive models used in risk assessment of nanomaterials. <i>NanoImpact</i> , 2018 , 11, 58-66	5.6	14	
153	Evaluation of CADASTER QSAR models for the aquatic toxicity of (benzo)triazoles and prioritisation by consensus prediction. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 49-64	2.1	14	
152	Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. <i>Environmental Research</i> , 2014 , 133, 220-31	7.9	14	
151	Structural requirements for anaerobic biodegradation of organic chemicals: A fragment model analysis. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 1943-1950	3.8	14	
150	The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. <i>Environmental Science and Pollution Research</i> , 1998 , 5, 12-6	5.1	14	
149	Comparison of subcellular partitioning, distribution, and internal speciation of Cu between Cu-tolerant and naMe populations of Dendrodrilus rubidus Savigny. <i>Environmental Science & Technology</i> , 2008 , 42, 3900-5	10.3	14	
148	Shape engineered TiO2 nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. <i>RSC Advances</i> , 2016 , 6, 70501-70509	3.7	14	
147	Disentanglement of the chemical, physical, and biological processes aids the development of quantitative structure-biodegradation relationships for aerobic wastewater treatment. <i>Science of the Total Environment</i> , 2020 , 708, 133863	10.2	14	

146	Emerging investigator series: the dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles. <i>Environmental Science: Nano</i> , 2018 , 5, 2473-2481	7.1	14
145	A Method to Assess the Relevance of Nanomaterial Dissolution During Reactivity Testing. <i>Materials</i> , 2020 , 13,	3.5	13
144	Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. <i>Electromagnetic Biology and Medicine</i> , 2014 , 33, 21-8	2.2	13
143	Quantitative structure-property relationship study on reductive dehalogenation of selected halogenated aliphatic hydrocarbons in sediment slurries. <i>Chemosphere</i> , 2001 , 44, 1557-63	8.4	13
142	Modeling reductive dehalogenation with quantum chemically derived descriptors. <i>SAR and QSAR in Environmental Research</i> , 1995 , 4, 237-52	3.5	13
141	Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter. <i>Water Research</i> , 2020 , 185, 116241	12.5	13
140	Compositional alterations in soil bacterial communities exposed to TiO nanoparticles are not reflected in functional impacts. <i>Environmental Research</i> , 2019 , 178, 108713	7.9	12
139	The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y and Ce) to Triticum aestivum. <i>Environmental Pollution</i> , 2019 , 250, 456-463	9.3	12
138	Theoretical investigations on C60 -ionic liquid interactions and their impacts on C60 dispersion behavior. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1802-8	3.8	12
137	Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia fetida. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1732-8	3.8	12
136	The use of quantitative structure-activity relationships for predicting rates of environmental hydrolysis processes. <i>Pure and Applied Chemistry</i> , 1991 , 63, 1667-1676	2.1	12
135	The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: Impacts of pH, humic acid, and divalent cations. <i>Chemosphere</i> , 2020 , 249, 126564	8.4	12
134	Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O/HO). <i>Free Radical Research</i> , 2018 , 52, 1118-1131	4	12
133	Aqueous-phase photooxygenation of enes, amines, sulfides and polycyclic aromatics by singlet (a1日) oxygen: prediction of rate constants using orbital energies, substituent factors and quantitative structureproperty relationships. <i>Environmental Chemistry</i> , 2017 , 14, 442	3.2	11
132	A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	11
131	Uncertainty of water type-specific hazardous copper concentrations derived with biotic ligand models. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2311-9	3.8	11
130	Accumulation of Theavy metals by Tenchytraeids and Tearthworms in Talfloodplain. <i>European Journal of Soil Biology</i> , 2006 , 42, S117-S126	2.9	11
129	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. <i>Nanotoxicology</i> , 2020 , 14, 310-325	5.3	11

128	Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. <i>Environmental Pollution</i> , 2018 , 243, 364-373	9.3	11
127	Trophic transfer of Cd from duckweed (Lemna minor L.) to tilapia (Oreochromis mossambicus). <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1367-1377	3.8	10
126	Read-across estimates of aquatic toxicity for selected fragrances. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 77-90	2.1	10
125	Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. <i>Chemosphere</i> , 2020 , 239, 124731	8.4	10
124	Development of a quantitative structure-activity relationship model for mechanistic interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic matter. <i>Science of the Total Environment</i> , 2020 , 712, 136450	10.2	9
123	Dose metrics assessment for differently shaped and sized metal-based nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2466-2473	3.8	9
122	Interaction of zero valent copper nanoparticles with algal cells under simulated natural conditions: Particle dissolution kinetics, uptake and heteroaggregation. <i>Science of the Total Environment</i> , 2019 , 689, 133-140	10.2	9
121	Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. <i>Aquatic Toxicology</i> , 2017 , 191, 105-112	5.1	9
120	Arguments for considering uncertainty in QSAR predictions in hazard and risk assessments. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 91-110	2.1	9
119	Kinetics, products, mechanisms and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. <i>Environmental Toxicology and Chemistry</i> , 1993 , 12, 1149-1161	3.8	9
118	Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer <i>Nature Nanotechnology</i> , 2022 ,	28.7	9
117	The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. <i>Chemosphere</i> , 2020 , 245, 125612	8.4	9
116	An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. <i>Science of the Total Environment</i> , 2020 , 708, 135134	10.2	9
115	Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. <i>Nature Communications</i> , 2021 , 12, 899	17.4	9
114	Earthworms and Their Use in Eco(toxico)logical Modeling. Emerging Topics in Ecotoxicology, 2009, 177-2	204	9
113	Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	8
112	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. <i>Nanotoxicology</i> , 2020 , 14, 725-739	5.3	8
111	The way forward for risk assessment of nanomaterials in solid media. <i>Environmental Pollution</i> , 2016 , 218, 1363-1364	9.3	8

110	Prioritisation of polybrominated diphenyl ethers (PBDEs) by using the QSPR-THESAURUS web tool. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 127-35	2.1	8
109	Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1988-95	3.8	8
108	Modeling toxicity of mixtures of perfluorooctanoic acid and triazoles (triadimefon and paclobutrazol) to the benthic cladoceran Chydorus sphaericus. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 6621-9	10.3	8
107	The reference-matrix concept applied to chemical testing of soils. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 51-63	14.6	8
106	Short-term ecological risks of depositing contaminated sediment on arable soil. <i>Ecotoxicology and Environmental Safety</i> , 2005 , 60, 1-14	7	8
105	Multivariate QSAR modelling of the rate of reductive dehalogenation of haloalkanes. <i>Journal of Chemometrics</i> , 1996 , 10, 483-492	1.6	8
104	Are Technological Developments Improving the Environmental Sustainability of Photovoltaic Electricity?. <i>Energy Technology</i> , 2020 , 8, 1901064	3.5	8
103	Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. <i>Nanotoxicology</i> , 2020 , 14, 1399-1414	5.3	8
102	Silicon nanoparticles: characterization and toxicity studies. <i>Environmental Science: Nano</i> , 2018 , 5, 2945-2	2 9 51	8
101	Modelling toxicity of metal mixtures: A generalisation of new advanced methods, considering potential application to terrestrial ecosystems. <i>Critical Reviews in Environmental Science and Technology</i> , 2017 , 47, 409-454	11.1	7
100	A tiered approach for environmental impact assessment of chemicals and their alternatives within the context of socio-economic analyses. <i>Journal of Cleaner Production</i> , 2015 , 108, 955-964	10.3	7
99	Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. <i>Environmental Science & Environmental Environmenta</i>	3883	7
98	Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry. <i>Ecotoxicology</i> , 2016 , 25, 1170-80	2.9	7
97	Substance-related environmental monitoring strategies regarding soil, groundwater and surface water - an overview. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 2810-27	5.1	7
96	Influence of bacterial extracellular polymeric substances on the sorption of Zn on Ealumina: A combination of FTIR and EXAFS studies. <i>Environmental Pollution</i> , 2017 , 220, 997-1004	9.3	7
95	The QSPR-THESAURUS: the online platform of the CADASTER project. <i>ATLA Alternatives To Laboratory Animals</i> , 2014 , 42, 13-24	2.1	7
94	Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 2688-93	3.8	7
93	Calcium and magnesium enhance arsenate rhizotoxicity and uptake in Triticum aestivum. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1642-8	3.8	7

(2018-2000)

92	The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. <i>Chemosphere</i> , 2000 , 40, 1319-26	8.4	7
91	QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems. <i>Science of the Total Environment</i> , 1991 , 109-110, 283-300	10.2	7
90	The effects of substituents and solvent polarity on photochemical [1,3] sigmatropic shifts. Experimental evidence in favour of the occurrence of sudden. <i>Tetrahedron</i> , 1988 , 44, 4927-4940	2.4	7
89	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity <i>NanoImpact</i> , 2022 , 25, 100366	5.6	7
88	Bioavalibility in Soils 2011 , 721-746		7
87	Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter. <i>Water Research</i> , 2021 , 192, 116857	12.5	7
86	A Dose Metrics Perspective on the Association of Gold Nanomaterials with Algal Cells. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 732-738	11	7
85	Development of a nano-QSPR model to predict band gaps of spherical metal oxide nanoparticles <i>RSC Advances</i> , 2019 , 9, 8426-8434	3.7	6
84	Oxidative stress actuated by cellulose nanocrystals and nanofibrils in aquatic organisms of different trophic levels. <i>NanoImpact</i> , 2020 , 17, 100211	5.6	6
83	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122390	12.8	6
82	The application of QSAR approaches to nanoparticles. <i>ATLA Alternatives To Laboratory Animals</i> , 2014 , 42, 43-50	2.1	6
81	Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches. <i>Environmental Science and Pollution Research</i> , 1997 , 4, 47-54	5.1	6
80	Soil type-specific environmental quality standards for zinc in Dutch soil. <i>Integrated Environmental Assessment and Management</i> , 2005 , 1, 252-8	2.5	6
79	On the use of backpropagation neural networks in modeling environmental degradation. <i>SAR and QSAR in Environmental Research</i> , 1995 , 4, 219-35	3.5	6
78	A non-Woodward and Hoffmann reaction path for photochemical sigmatropic rearrangements. <i>Computational and Theoretical Chemistry</i> , 1985 , 119, 367-378		6
77	Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. <i>Environmental Pollution</i> , 2021 , 269, 116066	9.3	6
76	Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. <i>Science of the Total Environment</i> , 2021 , 757, 143807	10.2	6
75	Multiscale Coupling Strategy for Nano Ecotoxicology Prediction. <i>Environmental Science & Eamp;</i> Technology, 2018 , 52, 7598-7600	10.3	6

74	Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1024-1031	3.8	5
73	Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 5283-92	5.1	5
72	Predictive models for estimating the vapor pressure of poly- and perfluorinated compounds at different temperatures. <i>Atmospheric Environment</i> , 2013 , 75, 147-152	5.3	5
71	Quantumchemical calculations on the photochemistry of germacrene and germacrol. The exclusive role of the exocyclic double bond isomerization. <i>Tetrahedron</i> , 1988 , 44, 2339-2350	2.4	5
70	. Environmental Toxicology and Chemistry, 2001 , 20, 2681	3.8	5
69	Environmental impacts of IIIIV/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. <i>Energy and Environmental Science</i> , 2020 , 13, 4280-4290	35.4	5
68	DFT/TDDFT insights into effects of dissociation and metal complexation on photochemical behavior of enrofloxacin in water. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 30609-30616	5.1	5
67	Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. <i>Chemosphere</i> , 2021 , 276, 130015	8.4	5
66	Systematic selection of a dose metric for metal-based nanoparticles. <i>NanoImpact</i> , 2019 , 13, 70-75	5.6	4
65	Compositional and predicted functional dynamics of soil bacterial community in response to single pulse and repeated dosing of titanium dioxide nanoparticles. <i>NanoImpact</i> , 2019 , 16, 100187	5.6	4
64	Modeling cadmium and nickel toxicity to earthworms with the free ion approach. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 438-46	3.8	4
63	The development of quantitative structure activity relationships for the direct photolysis of substituted haloaromatics in aqueous environments. <i>Science of the Total Environment</i> , 1993 , 134, 1397-	1 408	4
62	Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio. <i>Chemosphere</i> , 2020 , 242, 125246	8.4	4
61	Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations. <i>Environmental Science: Nano</i> , 2020 , 7, 3372-3	3 7 8 ¹ 4	4
60	Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 166, 63-70	7	4
59	Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 219, 112357	7	4
58	Development of a Quasi-QSAR Model for Prediction of the Immobilization Response of Daphnia magna Exposed to Metal-Based Nanomaterials <i>Environmental Toxicology and Chemistry</i> , 2022 ,	3.8	4
57	Toxicity models of metal mixtures established on the basis of <code>BdditivityLand</code> Interactions <i>If the footbasis of Environmental Science and Engineering</i> , 2017, 11, 1	5.8	3

56	Coupling mixture reference models with DGT-perceived metal flux for deciphering the nonadditive effects of rare earth mixtures to wheat in soils. <i>Environmental Research</i> , 2020 , 188, 109736	7.9	3
55	Implementation of Bioavailability in Prospective and Retrospective Risk Assessment of Chemicals in Soils and Sediments. <i>Handbook of Environmental Chemistry</i> , 2020 , 391-422	0.8	3
54	Experimental and theoretical studies in the EU FP7 Marie Curie Initial Training Network Project, Environmental ChemOinformatics (ECO). <i>ATLA Alternatives To Laboratory Animals</i> , 2014 , 42, 7-11	2.1	3
53	Initial assessment of the hazards and risks of new chemicals to man and the environment. <i>Science of the Total Environment</i> , 1993 , 134, 1597-1615	10.2	3
52	An experimental study on the mechanism and stereochemistry of a photochemical [1,3]-oh shift. A non-woodward and hoffmann reaction path for photochemic. <i>Tetrahedron</i> , 1988 , 44, 4821-4836	2.4	3
51	. Environmental Toxicology and Chemistry, 2003 , 22, 767	3.8	3
50	Bioavailability and phytotoxicity of rare earth metals to Triticum aestivum under various exposure scenarios. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 205, 111346	7	3
49	Ex ante life cycle assessment of GaAs/Si nanowireBased tandem solar cells: a benchmark for industrialization. <i>International Journal of Life Cycle Assessment</i> , 2020 , 25, 1767-1782	4.6	3
48	Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. <i>Aquatic Toxicology</i> , 2021 , 232, 105744	5.1	3
47	Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. <i>Science of the Total Environment</i> , 2021 , 773, 1448	395 ^{.2}	3
46	Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach <i>NanoImpact</i> , 2021 , 23, 100342	5.6	3
45	Transition-state rate theory sheds light on Black-boxIbiodegradation algorithms. <i>Green Chemistry</i> , 2020 , 22, 3558-3571	10	3
44	Method for extraction of nanoscale plastic debris from soil. <i>Analytical Methods</i> , 2021 , 13, 1576-1583	3.2	3
43	Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L. <i>Chemosphere</i> , 2021 , 280, 130863	8.4	3
42	The analytical quest for sub-micron plastics in biological matrices. <i>Nano Today</i> , 2021 , 41, 101296	17.9	3
41	Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. <i>Environmental Science: Nano</i> , 2020 , 7, 237	2 7 - 2 33	6 ²
40	Exemplification of the implementation of alternatives to experimental testing in chemical risk assessment - case studies from the CADASTER Project. Preface. <i>ATLA Alternatives To Laboratory Animals</i> , 2013 , 41, 13-7	2.1	2
39	Smart nanotoxicity testing for biodiversity conservation. <i>Environmental Science & Environmental Scien</i>	10.3	2

38	Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry <i>Environmental Science & Environmental Science &</i>	10.3	2
37	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms <i>NanoImpact</i> , 2022 , 25, 100375	5.6	2
36	Thermochemical unification of molecular descriptors to predict radical hydrogen abstraction with low computational cost. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23215-23225	3.6	2
35	Ordered weighted average based grouping of nanomaterials with Arsinh and dose response similarity models <i>NanoImpact</i> , 2022 , 25, 100370	5.6	2
34	Environmental Risk Assessment (ERA) of the application of nanoscience and nanotechnology in the food and feed chain. <i>EFSA Supporting Publications</i> , 2020 , 17, 1948E	1.1	2
33	The stochastic association of nanoparticles with algae at the cellular level: Effects of NOM, particle size and particle shape. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 218, 112280	7	2
32	Dynamic release and transformation of metallic copper colloids in flooded paddy soil: Role of soil reducible sulfate and temperature. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123462	12.8	2
31	Prediction of the Joint Toxicity of Multiple Engineered Nanoparticles: The Integration of Classic Mixture Models and Methods. <i>Chemical Research in Toxicology</i> , 2021 , 34, 176-178	4	2
30	Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms. <i>Science of the Total Environment</i> , 2021 , 781, 146583	10.2	2
29	The dispersion, stability, and resuspension of C in environmental water matrices. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 25538-25549	5.1	1
28	Chapter 9 Fate of contaminants in soil. <i>Developments in Soil Science</i> , 2004 , 29, 245-280	1.3	1
27	Feeding behaviour of Eisenia andrei in two different field contaminated soils. <i>Pedobiologia</i> , 2003 , 47, 670-675	1.7	1
26	Bayesian based similarity assessment of nanomaterials to inform grouping <i>NanoImpact</i> , 2022 , 25, 1003	8 8 96	1
25	The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 12527-12540	5.7	1
24	Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. <i>Environmental Pollution</i> , 2022 , 292, 118413	9.3	1
23	Development of a toxicokinetic-toxicodynamic model simulating chronic copper toxicity to the Zebra mussel based on subcellular fractionation. <i>Aquatic Toxicology</i> , 2021 , 241, 106015	5.1	1
22	A DFT/TDDFT study on the mechanisms of direct and indirect photodegradation of tetrabromobisphenol A in water. <i>Chemosphere</i> , 2019 , 220, 40-46	8.4	1
21	Particle-Specific Toxicity of Copper Nanoparticles to Soybean (Glycine max L.): Effects of Nanoparticle Concentration and Natural Organic Matter. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2825-2835	3.8	1

(2021-2022)

20	Delineation of the exposure-response causality chain of chronic copper toxicity to the zebra mussel, Dreissena polymorpha, with a TK-TD model based on concepts of biotic ligand model and subcellular metal partitioning model. <i>Chemosphere</i> , 2022 , 286, 131930	8.4	1
19	Immunotoxic effects of metal-based nanoparticles in fish and bivalves Nanotoxicology, 2022, 1-26	5.3	1
18	Machine learning predicts ecological risks of nanoparticles to soil microbial communities. <i>Environmental Pollution</i> , 2022 , 119528	9.3	1
17	Copper accumulation and physiological markers of soybean (Glycine max) grown in agricultural soil amended with copper nanoparticles <i>Ecotoxicology and Environmental Safety</i> , 2021 , 229, 113088	7	O
16	Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. <i>Environmental Pollution</i> , 2021 , 284, 117154	9.3	O
15	An Overview of Methodologies for Tracing and Quantifying Microplastics in Environmental Samples 2022 , 21-46		O
14	Emerging investigator series: Perspectives on toxicokinetics of nanoscale plastic debris in organisms. <i>Environmental Science: Nano</i> ,	7.1	0
13	Similarity assessment of metallic nanoparticles within a risk assessment framework: A case study on metallic nanoparticles and lettuce <i>NanoImpact</i> , 2022 , 26, 100397	5.6	O
12	Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence <i>Journal of Environmental Management</i> , 2022 , 310, 114770	7.9	0
11	Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO and nCeO exposure in the presence of artificial daylight <i>Regulatory Toxicology and Pharmacology</i> , 2022 , 131, 105156	3.4	O
10	UV/ozone induced physicochemical transformations of polystyrene nanoparticles and their aggregation tendency and kinetics with natural organic matter in aqueous systems <i>Journal of Hazardous Materials</i> , 2022 , 433, 128790	12.8	0
9	Microbiota-dependent TLR2 signaling reduces silver nanoparticle toxicity to zebrafish larvae <i>Ecotoxicology and Environmental Safety</i> , 2022 , 237, 113522	7	O
8	Best Paper Award. Environmental Toxicology and Chemistry, 2018, 37, 1783-1785	3.8	
7	44th IUPAC Congress: Environmental Chemistry. Pure and Applied Chemistry, 2014 , 86, 1083-1084	2.1	
6	A universal free energy relationship for both hard and soft radical addition in water. <i>Journal of Physical Organic Chemistry</i> ,e4317	2.1	
5	Improved science-based transformation pathways for the development of safe and sustainable plastics <i>Environment International</i> , 2022 , 160, 107055	12.9	
4	383 Incidence and injury patterns among electronic waste workers in informal sector in Ibadan, Nigeria. <i>Injury Prevention</i> , 2016 , 22, A140.2-A140	3.2	
3	The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	

Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation.. *Water Research*, **2022**, 217, 118333

12.5

Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies.. *Chemosphere*, **2022**, 302, 134879

8.4