
Haijiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597526/publications.pdf Version: 2024-02-01

Ηλιμλο ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Li Storage Properties of Disordered Graphene Nanosheets. Chemistry of Materials, 2009, 21, 3136-3142.	3.2	970
2	Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792.	6.7	305
3	Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. CrystEngComm, 2012, 14, 1775.	1.3	205
4	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. Journal of the American Chemical Society, 2017, 139, 10365-10373.	6.6	200
5	A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Research, 2011, 4, 274-283.	5.8	176
6	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as a Robust and Conductive Tight on Si Anodes Significantly Enhance Electrochemical Lithium Storage Performance. ACS Nano, 2020, 14, 5111-5120.	7.3	157
7	Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries. ACS Nano, 2021, 15, 15567-15593.	7.3	146
8	Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2016, 462, 9-18.	5.0	124
9	Structure Design and Composition Engineering of Carbonâ€Based Nanomaterials for Lithium Energy Storage. Advanced Energy Materials, 2020, 10, 1903030.	10.2	122
10	Controllable growth of SnS ₂ nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A, 2018, 6, 1462-1472.	5.2	117
11	Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Science Bulletin, 2021, 66, 1228-1252.	4.3	103
12	Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. Journal of Energy Chemistry, 2019, 32, 124-130.	7.1	102
13	Morphology and electrical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources, 2009, 189, 462-466.	4.0	100
14	Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. Journal of Power Sources, 2010, 195, 2950-2955.	4.0	97
15	A soft–hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. Journal of Materials Chemistry B, 2015, 3, 6480-6489.	2.9	89
16	Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties. Chemical Engineering Journal, 2018, 332, 431-439.	6.6	89
17	Strong Coupling of MoS ₂ Nanosheets and Nitrogenâ€Đoped Graphene for Highâ€Performance Pseudocapacitance Lithium Storage. Small, 2018, 14, e1704410.	5.2	89
18	A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chemical Communications, 2010, 46, 6783.	2.2	79

#	Article	IF	CITATIONS
19	Carbonâ€based adsorbents for postâ€combustion capture: a review. , 2018, 8, 11-36.		77
20	Three-dimensional MoS2/Carbon sandwiched architecture for boosted lithium storage capability. Nano Energy, 2019, 65, 104061.	8.2	74
21	Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties. CrystEngComm, 2012, 14, 3793.	1.3	67
22	Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. CrystEngComm, 2012, 14, 3169.	1.3	60
23	Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Advances, 2016, 6, 24946-24951.	1.7	58
24	Sn-based nanomaterials: From composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Materials, 2021, 43, 430-462.	9.5	57
25	Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties. Journal of Colloid and Interface Science, 2015, 448, 367-373.	5.0	52
26	A facile route for rapid synthesis of hollow mesoporous silica nanoparticles as pH-responsive delivery carrier. Journal of Colloid and Interface Science, 2015, 451, 101-107.	5.0	52
27	Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chemical Engineering Journal, 2016, 304, 156-164.	6.6	51
28	Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Science China Chemistry, 2021, 64, 964-973.	4.2	50
29	Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sensors and Actuators B: Chemical, 2015, 215, 15-23.	4.0	47
30	Integrating SnS ₂ Quantum Dots with Nitrogen-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Robust Sodium Storage Performance. ACS Applied Energy Materials, 2021, 4, 846-854.	2.5	40
31	Dual-templating synthesis of multi-shelled mesoporous silica nanoparticles as catalyst and drug carrier. Microporous and Mesoporous Materials, 2016, 228, 318-328.	2.2	39
32	Ultralarge interlayer distance and C,N-codoping enable superior sodium storage capabilities of MoS2 nanoonions. Chemical Engineering Journal, 2019, 378, 122249.	6.6	39
33	Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Research, 2017, 10, 2966-2976.	5.8	37
34	Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Research, 2017, 10, 121-133.	5.8	36
35	Adina Rubellaâ€Like Microsized SiO@Nâ€Doped Carbon Grafted with Nâ€Doped Carbon Nanotubes as Anodes for Highâ€Performance Lithium Storage. Small Science, 2022, 2, .	5.8	33
36	Shapeâ€Controlled Hollow Mesoporous Silica Nanoparticles with Multifunctional Capping for In Vitro Cancer Treatment. Chemistry - A European Journal, 2017, 23, 10878-10885.	1.7	31

#	Article	IF	CITATIONS
37	Functionalization of multi-walled carbon nanotubes via surface unpaired electrons. Nanotechnology, 2010, 21, 085706.	1.3	29
38	Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries. Journal of Materials Science and Technology, 2022, 100, 101-109.	5.6	29
39	Boosting sodium storage of mesoporous TiO2 nanostructure regulated by carbon quantum dots. Chinese Chemical Letters, 2020, 31, 897-902.	4.8	26
40	Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. Nano-Micro Letters, 2022, 14, 45.	14.4	26
41	Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2017, 490, 497-504.	5.0	25
42	Ultrasmall SnO ₂ nanocrystals sandwiched into polypyrrole and Ti ₃ C ₂ T _x MXene for highly effective sodium storage. Materials Chemistry Frontiers, 2021, 5, 825-833.	3.2	25
43	In situ twisting for stabilizing and toughening conductive graphene yarns. Nanoscale, 2017, 9, 11523-11529.	2.8	24
44	Growth of MoS ₂ Nanoflowers with Expanded Interlayer Distance onto Nâ€Đoped Graphene for Reversible Lithium Storage. ChemElectroChem, 2018, 5, 2263-2270.	1.7	24
45	Interfacial engineering of 0D/2D SnS2 heterostructure onto nitrogen-doped graphene for boosted lithium storage capability. Journal of Colloid and Interface Science, 2019, 538, 116-124.	5.0	23
46	Formation of mesoporous silica nanoparticles with tunable pore structure as promising nanoreactor and drug delivery vehicle. RSC Advances, 2016, 6, 13303-13311.	1.7	22
47	Threeâ€Dimensional Molybdenum Disulfide Nanoflowers Decorated on Graphene Nanosheets for Highâ€Performance Lithiumâ€ion Batteries. ChemElectroChem, 2016, 3, 1503-1512.	1.7	20
48	Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
49	Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries. Journal of Materials Research, 2014, 29, 609-616.	1.2	18
50	In situ chemical synthesis of SnO ₂ /reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. Journal of Materials Research, 2014, 29, 617-624.	1.2	17
51	Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres. Journal of Colloid and Interface Science, 2015, 452, 141-147.	5.0	16
52	In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries. Journal of Materials Science and Technology, 2022, 102, 8-15.	5.6	16
53	Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41, 8754-8760.	1.4	15
54	B-incorporated, N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability. Chinese Chemical Letters, 2022, 33, 480-485.	4.8	15

#	Article	IF	CITATIONS
55	Carbon-mediated fabrication of core–shell structured SnO ₂ @TiO ₂ nanocomposites with excellent photocatalytic performance. RSC Advances, 2015, 5, 58439-58448.	1.7	14
56	A room temperature approach for the fabrication of aligned TiO ₂ nanotube arrays on transparent conductive substrates. Chemical Communications, 2016, 52, 4045-4048.	2.2	14
57	Facile assembly of mesoporous silica nanoparticles with hierarchical pore structure for CO2 capture. Chinese Chemical Letters, 2019, 30, 2347-2350.	4.8	14
58	Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. Journal of Energy Chemistry, 2022, 72, 479-486.	7.1	14
59	Controllable synthesis of rod-like SnO ₂ nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Advances, 2016, 6, 4116-4127.	1.7	13
60	Template-free fabrication of rattle-type TiO2hollow microspheres with superior photocatalytic performance. RSC Advances, 2014, 4, 37311.	1.7	12
61	Self-etching preparation of yolk-shell Ag@carbon nanostructures for highly effective reduction of 4-nitrophenol. Catalysis Communications, 2017, 102, 114-117.	1.6	12
62	Kâ€Functionalized Carbon Quantum Dotsâ€Induced Interface Assembly of Carbon Nanocages for Ultrastable Potassium Storage Performance. Small Methods, 2022, 6, e2101627.	4.6	12
63	Synthesis of novel mesoporous silica nanoparticles for loading and release of ibuprofen. Journal of Controlled Release, 2011, 152, e38-e39.	4.8	11
64	A facile in-situ etching route to hollow C@SnO2 nanocomposites and their gas-sensing properties. Materials Research Bulletin, 2018, 103, 319-325.	2.7	11
65	Efficient one-pot synthesis of peapod-like hollow carbon nanomaterials for utrahigh drug loading capacity. Journal of Colloid and Interface Science, 2015, 437, 90-96.	5.0	10
66	Two physical strategies to reinforce a nonmetallic photocatalyst, g-C ₃ N ₄ : vacuum heating and electron beam irradiation. RSC Advances, 2016, 6, 14002-14008.	1.7	10
67	Raspberry—like monodispersity ZnO microspheres for photodegradation of rhodamine B. Materials Research Bulletin, 2018, 99, 37-44.	2.7	10
68	Coupling Fe3O4/Fe1-xS@Carbon with carbon-coated MoS2 nanosheets as a superior anode for sodium-ion batteries. Chemical Engineering Journal, 2022, 427, 131652.	6.6	10
69	Preparation of SnO2 Nanowires by Solvent-Free Method Using Mesoporous Silica Template and Their Gas Sensitive Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 11114-11118.	0.9	9
70	The Transformation of Hybrid Silica Nanoparticles from Solid to Hollow or Yolk‣hell Nanostructures. Chemistry - A European Journal, 2017, 23, 8066-8072.	1.7	9
71	Synthesis of porous Li ₂ MnO ₃ -LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ nanoplates via colloidal crystal template. Journal of Materials Research, 2013, 28, 1505-1511.	1.2	8
72	Sn ²⁺ -Regulated Synthesis of a Bone-like Fe ₃ O ₄ @N-Doped Carbon Composite as the Anode for High-Performance Lithium Storage. ACS Applied Energy Materials, 2021, 4, 3785-3793.	2.5	8

#	Article	IF	CITATIONS
73	Co Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes Grafted CNTs as Electrocatalysts for Enhanced Oxygen Reduction Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	8
74	Regulating the interfacial behavior of carbon nanotubes for fast lithium storage. Electrochimica Acta, 2021, 388, 138591.	2.6	7
75	Clucosamine-induced growth of highly distributed TiO ₂ nanoparticles on graphene nanosheets as high-performance photocatalysts. RSC Advances, 2016, 6, 67039-67048.	1.7	6
76	Carbon-incorporated, nitrogen-doped branch-like TiO2 nanostructure towards superior lithium storage performance. Journal of Alloys and Compounds, 2019, 787, 944-951.	2.8	6
77	One-Step Hydrothermal Synthesis of Small TiO ₂ Porous Nanoparticles for Efficient Degradation of Organic Dyes. Journal of Nanoscience and Nanotechnology, 2018, 18, 3185-3191.	0.9	5
78	Vacuumâ€Treated Mo,Sâ€Doped TiO ₂ :Gd Mesoporous Nanospheres: An Improved Visibleâ€Light Photocatalyst. European Journal of Inorganic Chemistry, 2015, 2015, 2895-2900.	1.0	4
79	Preparation of SnO2 Nanoparticles by Hard Template Method for High Selectivity Gas Sensors. Journal of Nanoscience and Nanotechnology, 2011, 11, 11023-11027.	0.9	3
80	A simple, rapid, one-step approach for preparation of Ag@TiO ₂ nanospheres with multiple cores as effective catalyst. RSC Advances, 2016, 6, 99878-99884.	1.7	3
81	Alkali-etching growth of nest-like Ag@mTiO 2 hierarchical nanostructures and their potential applications. Materials Science and Engineering C, 2017, 75, 1006-1013.	3.8	2
82	Preparation of SnO <inf>2</inf> nanowires by solvent-free method using mesoporous silica template and its gas sensitive properties. , 2010, , .		0
83	Preparation of SnO <inf>2</inf> nanoparticles by hard template method for high selectivity gas sensor. , 2010, , .		0