
Lars Kaestner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859723/publications.pdf Version: 2024-02-01

LADS KAESTNED

#	Article	IF	CITATIONS
1	Squeezing for Life – Properties of Red Blood Cell Deformability. Frontiers in Physiology, 2018, 9, 656.	2.8	213
2	Calcium in Red Blood Cells—A Perilous Balance. International Journal of Molecular Sciences, 2013, 14, 9848-9872.	4.1	204
3	Irisin and exercise training in humans – Results from a randomized controlled training trial. BMC Medicine, 2013, 11, 235.	5.5	191
4	Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane. Journal of Biological Chemistry, 2006, 281, 40302-40309.	3.4	135
5	Regulation of Phosphatidylserine Exposure in Red Blood Cells. Cellular Physiology and Biochemistry, 2011, 28, 847-856.	1.6	111
6	The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports, 2014, 4, 4348.	3.3	107
7	The non-selective voltage-activated cation channel in the human red blood cell membrane: reconciliation between two conflicting reports and further characterisation. Bioelectrochemistry, 2000, 52, 117-125.	4.6	105
8	Zinc octa-n-alkyl phthalocyanines in photodynamic therapy: photophysical properties, accumulation and apoptosis in cell cultures, studies in erythrocytes and topical application to Balb/c mice skin. Photochemical and Photobiological Sciences, 2003, 2, 660.	2.9	101
9	Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations. Frontiers in Physiology, 2017, 8, 979.	2.8	96
10	Ion channels in the human red blood cell membrane: their further investigation and physiological relevance. Bioelectrochemistry, 2002, 55, 71-74.	4.6	95
11	Reduced Cardiac L-Type Ca 2+ Current in Ca v β 2 â^'/â^' Embryos Impairs Cardiac Development and Contraction With Secondary Defects in Vascular Maturation. Circulation Research, 2006, 99, 749-757.	4.5	95
12	Differential Behavior of Fibroblasts and Epithelial Cells on Structured Implant Abutment Materials: A Comparison of Materials and Surface Topographies. Clinical Implant Dentistry and Related Research, 2015, 17, 1237-1249.	3.7	93
13	Red Blood Cells: Chasing Interactions. Frontiers in Physiology, 2019, 10, 945.	2.8	92
14	A background Ca ²⁺ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. European Heart Journal, 2015, 36, 2257-2266.	2.2	88
15	Calcium imaging of individual erythrocytes: Problems and approaches. Cell Calcium, 2006, 39, 13-19.	2.4	83
16	Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process. Thrombosis and Haemostasis, 2004, 92, 1269-1272.	3.4	77
17	Red cell investigations: Art and artefacts. Blood Reviews, 2013, 27, 91-101.	5.7	74
18	â€~Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Scientific Reports, 2017, 7, 1744.	3.3	68

#	Article	IF	CITATIONS
19	Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion. Cell Calcium, 2011, 50, 54-61.	2.4	66
20	<i>N</i> -methyl- <scp>d</scp> -aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation. American Journal of Physiology - Cell Physiology, 2013, 305, C1123-C1138.	4.6	65
21	Non-selective voltage-activated cation channel in the human red blood cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 9-15.	2.6	62
22	Classification of red blood cell shapes in flow using outlier tolerant machine learning. PLoS Computational Biology, 2018, 14, e1006278.	3.2	62
23	Amyloid Precursor Protein (APP) Mediated Regulation of Ganglioside Homeostasis Linking Alzheimer's Disease Pathology with Ganglioside Metabolism. PLoS ONE, 2012, 7, e34095.	2.5	61
24	Conceptual and technical aspects of transfection and gene delivery. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1171-1176.	2.2	61
25	Functional NMDA receptors in rat erythrocytes. American Journal of Physiology - Cell Physiology, 2010, 298, C1315-C1325.	4.6	60
26	Genetically Encoded Ca ²⁺ Indicators in Cardiac Myocytes. Circulation Research, 2014, 114, 1623-1639.	4.5	60
27	The potential of erythrocytes as cellular aging models. Cell Death and Differentiation, 2017, 24, 1475-1477.	11.2	58
28	Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. Journal of Molecular and Cellular Cardiology, 2012, 52, 113-124.	1.9	57
29	Glutaraldehyde – A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells. Frontiers in Physiology, 2019, 10, 514.	2.8	57
30	Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. Cardiovascular Research, 2010, 87, 485-493.	3.8	55
31	ldentification of PatL1, a human homolog to yeast P body component Pat1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1786-1792.	4.1	54
32	DNA Double-Strand Break Rejoining in Complex Normal Tissues. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1180-1187.	0.8	54
33	Red Cell Properties after Different Modes of Blood Transportation. Frontiers in Physiology, 2016, 7, 288.	2.8	54
34	The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes. Scientific Reports, 2017, 7, 39661.	3.3	53
35	Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Research in Cardiology, 2015, 110, 40.	5.9	51
36	Irisin Does Not Mediate Resistance Training–Induced Alterations in Resting Metabolic Rate. Medicine and Science in Sports and Exercise, 2014, 46, 1736-1743.	0.4	49

#	Article	IF	CITATIONS
37	A primary culture system for sustained expression of a calcium sensor in preserved adult rat ventricular myocytes. Cell Calcium, 2008, 43, 59-71.	2.4	47
38	Lysophosphatidic acid induced red blood cell aggregation in vitro. Bioelectrochemistry, 2012, 87, 89-95.	4.6	47
39	Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia?. Frontiers in Physiology, 2017, 8, 673.	2.8	47
40	Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. Advances in Experimental Medicine and Biology, 2020, 1131, 625-648.	1.6	43
41	Novel Insights in the Regulation of Phosphatidylserine Exposure in Human Red Blood Cells. Cellular Physiology and Biochemistry, 2016, 39, 1941-1954.	1.6	41
42	Overexpression of junctin causes adaptive changes in cardiac myocyte Ca2+ signaling. Cell Calcium, 2006, 39, 131-142.	2.4	39
43	3D tomography of cells in micro-channels. Applied Physics Letters, 2017, 111, .	3.3	38
44	Erythrocytes—the â€~house elves' of photodynamic therapy. Photochemical and Photobiological Sciences, 2004, 3, 981-989.	2.9	37
45	A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica, 2019, 104, e179-e183.	3.5	37
46	The buckling instability of aggregating red blood cells. Scientific Reports, 2017, 7, 7928.	3.3	36
47	Morphologically Homogeneous Red Blood Cells Present a Heterogeneous Response to Hormonal Stimulation. PLoS ONE, 2013, 8, e67697.	2.5	36
48	Malaria parasitePlasmodium gallinaceumup-regulates host red blood cell channels. FEBS Letters, 2001, 500, 45-51.	2.8	32
49	Protein Kinase Ca and P-Type Ca ²⁺ Channel Ca _V 2.1 in Red Blood Cell Calcium Signalling. Cellular Physiology and Biochemistry, 2013, 31, 883-891.	1.6	32
50	Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns. Molecular and Cellular Biology, 2014, 34, 2370-2381.	2.3	31
51	Remodelling of Ca2+ handling organelles in adult rat ventricular myocytes during long term culture. Journal of Molecular and Cellular Cardiology, 2010, 49, 427-437.	1.9	30
52	Optical Action Potential Screening on Adult Ventricular Myocytes as an Alternative QT-screen. Cellular Physiology and Biochemistry, 2011, 27, 281-290.	1.6	30
53	Heterogeneity of Red Blood Cells: Causes and Consequences. Frontiers in Physiology, 2020, 11, 392.	2.8	29
54	Antimargination of Microparticles and Platelets in the Vicinity of Branching Vessels. Biophysical Journal, 2018, 115, 411-425.	0.5	28

#	Article	IF	CITATIONS
55	Cation Channels in Erythrocytes - Historical and Future Perspective. The Open Biology Journal, 2011, 4, 27-34.	0.5	28
56	Noise-Free Visualization of Microscopic Calcium Signaling by Pixel-Wise Fitting. Circulation Research, 2012, 111, 17-27.	4.5	27
57	Voltage-Activated Ion Channels in Non-excitable Cells—A Viewpoint Regarding Their Physiological Justification. Frontiers in Physiology, 2018, 9, 450.	2.8	27
58	Density, heterogeneity and deformability of red cells as markers of clinical severity in hereditary spherocytosis. Haematologica, 2020, 105, 338-347.	3.5	27
59	Absence of neocytolysis in humans returning from a 3â€week highâ€altitude sojourn. Acta Physiologica, 2021, 232, e13647.	3.8	26
60	Red blood cell phenotyping from 3D confocal images using artificial neural networks. PLoS Computational Biology, 2021, 17, e1008934.	3.2	26
61	Isolation and Genetic Manipulation of Adult Cardiac Myocytes for Confocal Imaging. Journal of Visualized Experiments, 2009, , .	0.3	25
62	Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair, 2012, 11, 823-832.	2.8	25
63	Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca2+ handling, and red cell function in athletes and untrained subjects. Cell Calcium, 2016, 60, 235-244.	2.4	25
64	The combined effects of oncolytic reovirus plus Newcastle disease virus and reovirus plus parvovirus on U87 and U373 cells inÂvitro and inÂvivo. Journal of Neuro-Oncology, 2011, 104, 715-727.	2.9	22
65	Genetically Encoded Voltage Indicators in Circulation Research. International Journal of Molecular Sciences, 2015, 16, 21626-21642.	4.1	22
66	The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules, 2021, 11, 727.	4.0	21
67	Is there a role of <scp>C</scp> â€reactive protein in red blood cell aggregation?. International Journal of Laboratory Hematology, 2015, 37, 474-482.	1.3	20
68	Channelizing the red blood cell: molecular biology competes with patch-clamp. Frontiers in Molecular Biosciences, 2015, 2, 46.	3.5	20
69	Measurements of Intracellular Ca2+ Content and Phosphatidylserine Exposure in Human Red Blood Cells: Methodological Issues. Cellular Physiology and Biochemistry, 2016, 38, 2414-2425.	1.6	20
70	A system for optical high resolution screening of electrical excitable cells. Cell Calcium, 2010, 47, 224-233.	2.4	19
71	DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovascular Research, 2019, 115, 1052-1066.	3.8	19
72	Trifluoperazine-Induced Suicidal Erythrocyte Death and S-Nitrosylation Inhibition, Reversed by the Nitric Oxide Donor Sodium Nitroprusside. Cellular Physiology and Biochemistry, 2017, 42, 1985-1998.	1.6	18

#	Article	IF	CITATIONS
73	Cross-sectional focusing of red blood cells in a constricted microfluidic channel. Soft Matter, 2020, 16, 534-543.	2.7	18
74	Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification. Cells, 2021, 10, 788.	4.1	18
75	Regulation of red cell life-span, erythropoiesis, senescence, and clearance. Frontiers in Physiology, 2014, 5, 269.	2.8	17
76	Large scale, unbiased analysis of elementary calcium signaling events in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2019, 135, 79-89.	1.9	17
77	Gardos channelopathy: functional analysis of a novel <i>KCNN4</i> variant. Blood Advances, 2020, 4, 6336-6341.	5.2	17
78	Hyperaldosteronism induces left atrial systolic and diastolic dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1014-H1023.	3.2	16
79	Does Erythropoietin Regulate TRPC Channels in Red Blood Cells?. Cellular Physiology and Biochemistry, 2017, 41, 1219-1228.	1.6	16
80	Intracellular Ca2+ Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Frontiers in Physiology, 2019, 10, 1629.	2.8	16
81	Cardiac N-methyl d-aspartate Receptors as a Pharmacological Target. Journal of Cardiovascular Pharmacology, 2016, 68, 356-373.	1.9	15
82	C2-domain mediated nano-cluster formation increases calcium signaling efficiency. Scientific Reports, 2016, 6, 36028.	3.3	15
83	Effect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers. Applied Sciences (Switzerland), 2020, 10, 7581.	2.5	15
84	Trends in the Development of Diagnostic Tools for Red Blood Cell-Related Diseases and Anemias. Frontiers in Physiology, 2020, 11, 387.	2.8	15
85	Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes. Cardiovascular Research, 2012, 95, 48-58.	3.8	14
86	NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection. Methods in Molecular Biology, 2017, 1677, 265-282.	0.9	14
87	Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Communication and Signaling, 2020, 18, 155.	6.5	14
88	The Transient Receptor Potential Vanilloid Type 2 (TRPV2) Channel–A New Druggable Ca2+ Pathway in Red Cells, Implications for Red Cell Ion Homeostasis. Frontiers in Physiology, 2021, 12, 677573.	2.8	14
89	Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications. Frontiers in Physiology, 2022, 13, 884690.	2.8	14
90	Mechanical Stress Induces Ca2+-Dependent Signal Transduction in Erythroblasts and Modulates Erythropoiesis. International Journal of Molecular Sciences, 2021, 22, 955.	4.1	13

#	Article	IF	CITATIONS
91	Differential presentation of tumor antigenâ€derived epitopes by MHCâ€class I and antigenâ€positive tumor cells. International Journal of Cancer, 2008, 123, 1841-1847.	5.1	12
92	Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells, 2021, 10, 456.	4.1	12
93	Lingering Dynamics in Microvascular Blood Flow. Biophysical Journal, 2021, 120, 432-439.	O.5	12
94	Erythrocyte Sedimentation: Collapse of a High-Volume-Fraction Soft-Particle Gel. Physical Review Letters, 2022, 128, 088101.	7.8	12
95	Ca2+ channel currents and contraction in CaVβ3-deficient ileum smooth muscle from mouse. Cell Calcium, 2007, 42, 477-487.	2.4	11
96	Screening Action Potentials: The Power of Light. Frontiers in Pharmacology, 2011, 2, 42.	3.5	11
97	Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse. Physical Review E, 2022, 105, 024610.	2.1	11
98	Calcium dysregulation in ventricular myocytes from mice expressing constitutively active Rac1. Cell Calcium, 2013, 54, 26-36.	2.4	10
99	The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Frontiers in Physiology, 2022, 13, 824478.	2.8	10
100	Calcium homeostasis in red blood cells of dialysis patients in dependence of erythropoietin treatment. Frontiers in Physiology, 2014, 5, 16.	2.8	9
101	An adaptation of astronomical image processing enables characterization and functional 3D mapping of individual sites of excitation-contraction coupling in rat cardiac muscle. ELife, 2017, 6, .	6.0	9
102	A pilot clinical phase II trial MemSID: Acute and durable changes of red blood cells of sickle cell disease patients on memantine treatment. EJHaem, 2020, 1, 23-34.	1.0	9
103	Artificial intelligence meets hematology. Transfusion and Apheresis Science, 2020, 59, 102986.	1.0	9
104	Red blood cell ghosts and intact red blood cells as complementary models in photodynamic cell research. Bioelectrochemistry, 2004, 62, 123-126.	4.6	8
105	Detecting calcium in cardiac muscle: fluorescence to dye for. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1687-H1690.	3.2	8
106	Multi-Channel Imaging of Cellular Signaling: Interplay of Ca 2+ and Conventional Protein Kinase C. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077024.	0.3	8
107	A Previously Unrecognized Ca ²⁺ â€inhibited Nonselective Cation Channel in Red Blood Cells. HemaSphere, 2018, 2, e146.	2.7	8
108	Commentary: Voltage Gating of Mechanosensitive PIEZO Channels. Frontiers in Physiology, 2018, 9, 1565.	2.8	8

#	Article	IF	CITATIONS
109	The Evolution of Erythrocytes Becoming Red in Respect to Fluorescence. Frontiers in Physiology, 2019, 10, 753.	2.8	8
110	Red Blood Cell Membrane Conductance in Hereditary Haemolytic Anaemias. Frontiers in Physiology, 2019, 10, 386.	2.8	8
111	Red Blood Cells Actively Contribute to Blood Coagulation and Thrombus Formation. , 2019, , .		8
112	Early Career Scientists' Guide to the Red Blood Cell – Don't Panic!. Frontiers in Physiology, 2020, 11, 588.	2.8	8
113	Mechanistic ion channel interactions in red cells of patients with Gárdos channelopathy. Blood Advances, 2021, 5, 3303-3308.	5.2	8
114	Calcium signalling. , 2013, , .		7
115	Cardiac remodeling in Gαq and Gα11 knockout mice. International Journal of Cardiology, 2016, 202, 836-845.	1.7	7
116	Imaging Erythrocyte Sedimentation in Whole Blood. Frontiers in Physiology, 2021, 12, 729191.	2.8	7
117	Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Frontiers in Physiology, 2022, 13, 852946.	2.8	7
118	Differential targeting of cPKC and nPKC decodes and regulates Ca2+ and lipid signalling. Biochemical Society Transactions, 2014, 42, 1538-1542.	3.4	6
119	Optogenetic Tools in the Microscopy of Cardiac Excitation-Contraction Coupling. , 2018, , 97-117.		6
120	Continuous Percoll Gradient Centrifugation of Erythrocytes—Explanation of Cellular Bands and Compromised Age Separation. Cells, 2022, 11, 1296.	4.1	6
121	ATOM - an OMERO add-on for automated import of image data. BMC Research Notes, 2011, 4, 382.	1.4	5
122	PKCα diffusion and translocation are independent of an intact cytoskeleton. Scientific Reports, 2017, 7, 475.	3.3	5
123	Non-linear and ultra high-speed imaging for explorations of the murine and human heart. Proceedings of SPIE, 2007, , .	0.8	4
124	Multi-Beam Two-Photon Imaging of Fast Ca ²⁺ Signals in the Langendorff Mouse Heart. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077016.	0.3	4
125	Towards Imaging the Dynamics of Protein Signalling. Principles and Practice, 2007, , 289-312.	0.3	4
126	Transient receptor potential channel vanilloid type 2 in red cells of cannabis consumer. American Journal of Hematology, 2022, 97, .	4.1	4

Lars Kaestner

#	Article	IF	CITATIONS
127	Action Potentials in Heart Cells. Springer Series on Fluorescence, 2011, , 163-182.	0.8	3
128	Cardiac safety screens: molecular, cellular, and optical advancements. , 2011, , .		3
129	Confocal FLIM of Genetically Encoded FRET Sensors for Quantitative Ca2+Imaging. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077040.	0.3	3
130	Endothelin-1-induced remodelling of murine adult ventricular myocytes. Cell Calcium, 2016, 59, 41-53.	2.4	3
131	A deep learning-based concept for high throughput image flow cytometry. Applied Physics Letters, 2021, 118, 123701.	3.3	3
132	Of mice and men ¹ : How to achieve a better life with lower total Hb mass after returning from hypoxia to normoxia. (response to Song and colleagues). Acta Physiologica, 2021, 233, e13720.	3.8	3
133	"So is science …â€ ¹ : No evidence for <i>neocytolysis</i> on descending the mountains (Response to Rice and Gunga). Acta Physiologica, 2021, 233, e13709.	3.8	3
134	In Vitro Erythropoiesis at Different pO2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia. Cells, 2022, 11, 1082.	4.1	3
135	Artificial intelligence: Training the trainer. British Journal of Haematology, 2022, 198, 805-806.	2.5	3
136	Novel Roles of Gq-Dependent Signal Transduction for Cardiac Pacemaking and Cardiac Impulse Propagation Studied by Gq-KO and a DREADD. Biophysical Journal, 2015, 108, 131a-132a.	0.5	2
137	Optical Sectioning Microscopy at â€~Temporal Super-Resolution'. , 2018, , 21-35.		2
138	Editorial: The Red Cell Life-Cycle From Erythropoiesis to Clearance. Frontiers in Physiology, 2018, 9, 1537.	2.8	2
139	The Relation Between Extracellular Vesicles Released From Red Blood Cells, Their Cargo, and the Clearance by Macrophages. Frontiers in Physiology, 2022, 13, 783260.	2.8	2
140	Concepts for optical high content screens of excitable primary isolated cells for molecular imaging. Proceedings of SPIE, 2009, , .	0.8	1
141	Erythrocytes and Erythropoietin. International Journal of Cell Biology, 2011, 2011, 1-2.	2.5	1
142	The Red Blood Cells on the Move!. Frontiers in Physiology, 2018, 9, 474.	2.8	1
143	Rare Anemias: Are Their Names Just Smoke and Mirrors?. Frontiers in Physiology, 2021, 12, 690604.	2.8	1

144 Cardiac safety screens: Molecular, cellular and optical advancements. , 2011, , .

1

#	Article	IF	CITATIONS
145	Space anemia unexplained: Red blood cells seem to be spaceâ€proof. American Journal of Hematology, 2022, 97, .	4.1	1
146	Cardiac action potential imaging. Proceedings of SPIE, 2013, , .	0.8	0
147	Two-Photon Photolysis Combined with a Kilobeam Array Scanner to Probe Calcium Signaling in Cardiomyocytes. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077008.	0.3	0
148	Two-Dimensional Imaging of Fast Intracellular Ca ²⁺ Release. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot077032.	0.3	0
149	Large-Scale, Automated Calcium Spark Analysis using iSpark Reveals Functional and Spatial Remodeling During Cardiac Hypertrophy. Biophysical Journal, 2015, 108, 340a.	0.5	0
150	Increased Signaling Efficiency of Conventional PKC through Self-Assembled Clustering on the Plasma Membrane. Biophysical Journal, 2015, 108, 526a.	0.5	0
151	A Novel Gain of Function Mutation of Piezo-1 is Investigated in Red Blood Cells by High-Throughput Patch Clamp. Biophysical Journal, 2019, 116, 244a-245a.	0.5	0
152	Do fluorocarbons substantially increase transdermal oxygen delivery? A proof-of-principle study in mice. Open Research Europe, 0, 1, 39.	2.0	0
153	Do fluorocarbons substantially increase transdermal oxygen delivery? A proof-of-principle study in mice. Open Research Europe, 0, 1, 39.	2.0	0
154	Non-linear and ultra high-speed imaging for explorations of the murine and human heart. , 2007, , .		0
155	A Yoda1-Based Approach to Investigate Piezo1 Channels in Red Blood Cells Using Automated Patch Clamp Technology. Blood, 2018, 132, 1031-1031.	1.4	0
156	Editorial: Red Blood Cells at the Mount of Truth: Highlights of the 22nd Meeting of the European Red Cell Research Society. Frontiers in Physiology, 2020, 11, 607456.	2.8	0