Chenyan Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8597091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc nutrition and dietary zinc supplements. Critical Reviews in Food Science and Nutrition, 2023, 63, 1277-1292.	5.4	20
2	Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Critical Reviews in Food Science and Nutrition, 2023, 63, 10866-10879.	5.4	1
3	Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. Food Reviews International, 2022, 38, 812-828.	4.3	7
4	Varietal differences in the phytochemical components' accumulation and aroma profile of three Humulus lupulus cultivars. Food Control, 2022, 132, 108499.	2.8	5
5	Exploring two types of prenylated bitter compounds from hop plant (Humulus lupulus L.) against α-glucosidase in vitro and in silico. Food Chemistry, 2022, 370, 130979.	4.2	20
6	Characterization of bitterâ€ŧasting and antioxidant activity of dryâ€hopped beers. Journal of the Science of Food and Agriculture, 2022, 102, 4843-4853.	1.7	4
7	Structural comparison between the DNA-protective ability of scallop and shrimp ferritin from iron-induced oxidative damage. Food Chemistry, 2022, 386, 132827.	4.2	6
8	Construction of alginate beads for efficient conversion of CO2 into vaterite CaCO3 particles. Food Hydrocolloids, 2022, 130, 107693.	5.6	4
9	Protein Z-based promising carriers for enhancing solubility and bioaccessibility of Xanthohumol. Food Hydrocolloids, 2022, 131, 107771.	5.6	6
10	Roles of homopolymeric apoferritin in alleviating alcohol-induced liver injury. Food Bioscience, 2022, , 101794.	2.0	0
11	Designing Stacked Assembly of Type III Rubisco for CO ₂ Fixation with Higher Efficiency. Journal of Agricultural and Food Chemistry, 2022, 70, 7049-7057.	2.4	2
12	Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chemical Society Reviews, 2021, 50, 3957-3989.	18.7	47
13	Application of UHPLC-Q/TOF-MS-based metabolomics analysis for the evaluation of bitter-tasting Krausen metabolites during beer fermentation. Journal of Food Composition and Analysis, 2021, 99, 103850.	1.9	9
14	Weak Binding of Epigallocatechin to α-Lactalbumin Greatly Improves Its Stability and Uptake by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2021, 69, 8482-8491.	2.4	9
15	Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. International Journal of Molecular Sciences, 2021, 22, 9373.	1.8	4
16	Potential enzymes involved in beer monoterpenoids transformation: structures, functions and challenges. Critical Reviews in Food Science and Nutrition, 2021, , 1-11.	5.4	2
17	Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nature Communications, 2021, 12, 4849.	5.8	13
18	Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnology Advances, 2021, 52, 107835.	6.0	26

CHENYAN LV

#	Article	IF	CITATIONS
19	Chicoric acid encapsulated within ferritin inhibits tau phosphorylation by regulating AMPK and GluT1 signaling cascade. Journal of Functional Foods, 2021, 86, 104681.	1.6	8
20	Shrimp ferritin greatly improves the physical and chemical stability of astaxanthin. Journal of Food Science, 2021, 86, 5295-5306.	1.5	9
21	16-Mer ferritin-like protein templated gold nanoclusters for bioimaging detection of methylmercury in the brain of living mice. Analytica Chimica Acta, 2020, 1127, 149-155.	2.6	19
22	His-Mediated Reversible Self-Assembly of Ferritin Nanocages through Two Different Switches for Encapsulation of Cargo Molecules. ACS Nano, 2020, 14, 17080-17090.	7.3	38
23	Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Advances, 2019, 9, 24777-24782.	1.7	21
24	Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs. Nano Letters, 2019, 19, 4023-4028.	4.5	31
25	Dietary soybean isoflavones in Alzheimer's disease prevention. Asia Pacific Journal of Clinical Nutrition, 2018, 27, 946-954.	0.3	16
26	Interactions between plant proteins/enzymes and other food components, and their effects on food quality. Critical Reviews in Food Science and Nutrition, 2017, 57, 1718-1728.	5.4	19
27	Bioavailability of iron from plant and animal ferritins. Journal of Nutritional Biochemistry, 2015, 26, 532-540.	1.9	37
28	Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Research International, 2014, 62, 183-192.	2.9	107
29	Four-Fold Channels Are Involved in Iron Diffusion into the Inner Cavity of Plant Ferritin. Biochemistry, 2014, 53, 2232-2241.	1.2	26
30	A novel homopolymeric phytoferritin from chickpea seeds with high stability. European Food Research and Technology, 2014, 239, 777-783.	1.6	6
31	NADH induces iron release from pea seed ferritin: A model for interaction between coenzyme and protein components in foodstuffs. Food Chemistry, 2013, 141, 3851-3858.	4.2	33
32	Identification of seven water-soluble non-storage proteins from pomegranate (Punica granatum Linn.) seeds. Food Science and Technology International, 2012, 18, 329-338.	1.1	3
33	Effect of high hydrostatic pressure (HHP) on structure and activity of phytoferritin. Food Chemistry, 2012, 130, 273-278.	4.2	36
34	A novel strategy of natural plant ferritin to protect DNA from oxidative damage during iron oxidation. Free Radical Biology and Medicine, 2012, 53, 375-382.	1.3	18
35	Optimization of Extraction Process of Crude Protein from Grape Seeds by RSM. Food Science and Technology Research, 2011, 17, 437-445.	0.3	18
36	Chitinase III in pomegranate seeds (<i>Punica granatum</i> Linn.): a highâ€capacity calciumâ€binding protein in amyloplasts. Plant Journal, 2011, 68, 765-776.	2.8	29

#	Article	IF	CITATIONS
37	High-capacity calcium-binding chitinase III from pomegranate seeds (<i>Punica granatum</i> Linn.) is located in amyloplasts. Plant Signaling and Behavior, 2011, 6, 1963-1965.	1.2	5