Ying Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596932/publications.pdf

Version: 2024-02-01

82 3,168 28 papers citations h-index

84 84 84 4479
all docs docs citations times ranked citing authors

53

g-index

#	Article	IF	CITATIONS
1	AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks. Nucleic Acids Research, 2022, 50, e45-e45.	6.5	9
2	Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning. ACS Sensors, 2022, 7, 1524-1532.	4.0	27
3	Molecular Design and Photothermal Application of Thienoisoindigo Dyes with Aggregation-Induced Emission. ACS Applied Bio Materials, 2022, 5, 3428-3437.	2.3	7
4	MASI: microbiotaâ€"active substance interactions database. Nucleic Acids Research, 2021, 49, D776-D782.	6.5	28
5	Conjugated Polymer Nanoparticles Based on Copper Coordination for Real-Time Monitoring of pH-Responsive Drug Delivery. ACS Applied Bio Materials, 2021, 4, 2583-2590.	2.3	12
6	Near-Infrared Thienoisoindigos with Aggregation-Induced Emission: Molecular Design, Optical Performance, and Bioimaging Application. Analytical Chemistry, 2021, 93, 3378-3385.	3.2	28
7	Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations. Nature Machine Intelligence, 2021, 3, 334-343.	8.3	66
8	Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using Microneedle Arrays. Pharmaceutics, 2021, 13, 827.	2.0	16
9	Discrimination of Powdered Infant Formula According to Species, Country of Origin, and Brand Using a Fluorescent Sensor Array. ACS Food Science & Technology, 2021, 1, 1392-1398.	1.3	2
10	One-Pot Simultaneous Detection of Multiple DNA and MicroRNA by Integrating the Cationic-Conjugated Polymer and Nuclease-Assisted Cyclic Amplification. ACS Applied Bio Materials, 2021, 4, 820-828.	2.3	7
11	Unveiling the Molecular Dynamics in a Living Cell to the Subcellular Organelle Level Using Second-Harmonic Generation Spectroscopy and Microscopy. Analytical Chemistry, 2021, 93, 14146-14152.	3.2	10
12	Combining kinase inhibitors for optimally coâ€targeting cancer and drug escape by exploitation of drug target promiscuities. Drug Development Research, 2021, 82, 133-142.	1.4	0
13	Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Research, 2020, 48, D1031-D1041.	6.5	488
14	Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Biosensors and Bioelectronics, 2020, 150, 111936.	5.3	22
15	Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. Journal of Materials Chemistry B, 2020, 8, 9906-9912.	2.9	23
16	Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification. Biosensors and Bioelectronics, 2020, 169, 112631.	5.3	19
17	A biotin-guided hydrogen sulfide fluorescent probe and its application in living cell imaging. RSC Advances, 2020, 10, 36135-36140.	1.7	9
18	Highly Selective Oxidation of Organic Sulfides by a Conjugated Polymer as the Photosensitizer for Singlet Oxygen Generation. ACS Applied Materials & Singlet Oxygen Generation. ACS Applied Materials & Singlet Oxygen Generation.	4.0	38

#	Article	IF	CITATIONS
19	Fluorescent switch based on dithienylethene with dansulfonamide in multimedium. Dyes and Pigments, 2020, 181, 108546.	2.0	13
20	Databases for facilitating mechanistic investigations of traditional Chinese medicines against COVID-19. Pharmacological Research, 2020, 159, 104989.	3.1	11
21	Improved Prediction of Aqueous Solubility of Novel Compounds by Going Deeper With Deep Learning. Frontiers in Oncology, 2020, 10, 121.	1.3	49
22	Poly(fluorenone- <i>co</i> -thiophene)-based nanoparticles for two-photon fluorescence imaging in living cells and tissues. RSC Advances, 2020, 10, 12373-12377.	1.7	3
23	Tissue Imaging of Glutathione-Specific Naphthalimide–Cyanine Dye with Two-Photon and Near-Infrared Manners. Analytical Chemistry, 2019, 91, 11343-11348.	3.2	45
24	Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells. Journal of Organic Chemistry, 2019, 84, 14498-14507.	1.7	35
25	Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification. Talanta, 2019, 200, 480-486.	2.9	19
26	One-Step Construction of Fluorenone-Based Donorâ€"Acceptor-Type Conjugated Polymers via Direct Arylation Polymerization for Cell-Imaging Applications. ACS Applied Materials & Direct 28246-28253.	4.0	13
27	A novel near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging. New Journal of Chemistry, 2019, 43, 6848-6855.	1.4	34
28	Photodynamic therapy based on organic small molecular fluorescent dyes. Chinese Chemical Letters, 2019, 30, 1689-1703.	4.8	89
29	Drug sales confirm clinical advantage of multiâ€ŧarget inhibition of drug escapes by anticancer kinase inhibitors. Drug Development Research, 2019, 80, 246-252.	1.4	1
30	CMAUP: a database of collective molecular activities of useful plants. Nucleic Acids Research, 2019, 47, D1118-D1127.	6.5	68
31	Core-shell assay based aptasensor for sensitive and selective thrombin detection using dark-field microscopy. Talanta, 2018, 182, 348-353.	2.9	11
32	NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 2018, 46, D1217-D1222.	6.5	177
33	A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Analytica Chimica Acta, 2018, 1018, 86-93.	2.6	46
34	A Visible and Near-Infrared, Dual-Channel Fluorescence-On Probe for Selectively Tracking Mitochondrial Glutathione. CheM, 2018, 4, 1609-1628.	5.8	161
35	Conjugated polyelectrolytes with a label-free aptamer for specific protein photoinactivation. Analytical Methods, 2018, 10, 2205-2210.	1.3	2
36	A one-step synthesized acridine-based fluorescent chemosensor for selective detection of copper(<scp>ii</scp>) ions and living cell imaging. New Journal of Chemistry, 2018, 42, 613-618.	1.4	33

#	Article	IF	CITATIONS
37	Efficient photocatalytic oxidation sensitized by conjugated polymers in a batch reaction and microreactors under visible light. Journal of Materials Chemistry A, 2018, 6, 15927-15932.	5.2	14
38	A New Strategy Involving the Use of Peptides and Graphene Oxide for Fluorescence Turn-on Detection of Proteins. Sensors, 2018, 18, 385.	2.1	8
39	Sensitive and Selective Immunofluorescence Assay for CA15-3 Detection Using Fluorescein Derivative A10254. Protein and Peptide Letters, 2018, 25, 776-782.	0.4	3
40	An iminodiacetate-modified conjugated polyelectrolyte for fluorescent labeling of histidine-tagged proteins. Chemical Communications, 2017, 53, 4191-4194.	2.2	6
41	Light-Induced Translocation of a Conjugated Polyelectrolyte in Cells: From Fluorescent Probe to Anticancer Agent. ACS Applied Materials & Interfaces, 2017, 9, 10512-10518.	4.0	19
42	A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium. Sensors and Actuators B: Chemical, 2017, 243, 765-774.	4.0	124
43	Database and Bioinformatics Studies of Probiotics. Journal of Agricultural and Food Chemistry, 2017, 65, 7599-7606.	2.4	18
44	Recent advances in formaldehyde-responsive fluorescent probes. Chinese Chemical Letters, 2017, 28, 1935-1942.	4.8	100
45	A fluorescent aptasensor with product-triggered amplification by exonuclease III digestion for highly sensitive ATP detection. Analytical Methods, 2017, 9, 4837-4842.	1.3	24
46	Molecular weight analysis of water-soluble poly(phenylene ethynylene)s using MALDI-TOF MS. Journal of Polymer Science Part A, 2017, 55, 2537-2543.	2.5	7
47	The Optimization and Characterization of an RNA-Cleaving Fluorogenic DNAzyme Probe for MDA-MB-231 Cell Detection. Sensors, 2017, 17, 650.	2.1	4
48	HEROD: a human ethnic and regional specific omics database. Bioinformatics, 2017, 33, 3276-3282.	1.8	3
49	UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion <i>in vitro</i> . Oncotarget, 2017, 8, 71736-71749.	0.8	6
50	A simple benzimidazole quinoline-conjugate fluorescent chemosensor for highly selective detection of Ag +. Tetrahedron, 2016, 72, 3980-3985.	1.0	22
51	Fluorescence array-based sensing of nitroaromatics using conjugated polyelectrolytes. Analyst, The, 2016, 141, 3242-3245.	1.7	12
52	An efficient quinoline-based fluorescence sensor for zinc(II) and its application in live-cell imaging. Sensors and Actuators B: Chemical, 2016, 234, 616-624.	4.0	70
53	Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 805-813.	2.8	9
54	A sensitive polymeric dark quencher-based sensing platform for fluorescence "turn on―detection of proteins. RSC Advances, 2016, 6, 42443-42446.	1.7	6

#	Article	IF	CITATIONS
55	A simple quinoline-derived fluorescent sensor for the selective and sequential detection of copper(<scp>ii</scp>) and sulfide ions and its application in living-cell imaging. RSC Advances, 2016, 6, 77508-77514.	1.7	24
56	Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of Fa $^{\circ}$ and S2a $^{\circ}$ by a simple fluorogenic benzimidazole-based chemosensor. Talanta, 2016, 161, 309-319.	2.9	84
57	Conjugated Polyelectrolyte Nanoparticles for Apoptotic Cell Imaging. ACS Applied Materials & Company (1997) and Interfaces, 2016, 8, 21984-21989.	4.0	18
58	Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochemical and Biophysical Research Communications, 2016, 470, 936-940.	1.0	9
59	Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3567-3574.	4.0	47
60	The Assessment of the Readiness of Molecular Biomarker-Based Mobile Health Technologies for Healthcare Applications. Scientific Reports, 2015, 5, 17854.	1.6	15
61	A simple and novel amide ligand based on quinoline derivative used for palladium-catalyzed Suzuki coupling reaction. Journal of Organometallic Chemistry, 2015, 794, 27-32.	0.8	15
62	Fluorescence Array-Based Sensing of Metal Ions Using Conjugated Polyelectrolytes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6882-6888.	4.0	82
63	Highly Specific Recognition of Breast Tumors by an RNA-Cleaving Fluorogenic DNAzyme Probe. Analytical Chemistry, 2015, 87, 569-577.	3.2	48
64	Understanding Resistance Mechanism of Protoporphyrinogen Oxidase-Inhibiting Herbicides: Insights from Computational Mutation Scanning and Site-Directed Mutagenesis. Journal of Agricultural and Food Chemistry, 2014, 62, 7209-7215.	2.4	29
65	Mutation of the conserved GRG motif and decreasing activity of human RNase H2. Open Life Sciences, 2014, 10, .	0.6	0
66	Diazobenzene-containing conjugated polymers as dark quenchers. Chemical Communications, 2013, 49, 11379.	2.2	22
67	Design and synthesis of 1-(benzothiazol-5-yl)-1H-1,2,4-triazol-5-ones as protoporphyrinogen oxidase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 3245-3255.	1.4	34
68	A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. Journal of Materials Chemistry B, 2013, 1, 1402.	2.9	19
69	Quantitative Structural Insight into Human Variegate Porphyria Disease. Journal of Biological Chemistry, 2013, 288, 11731-11740.	1.6	37
70	Computational and Experimental Insights into the Mechanism of Substrate Recognition and Feedback Inhibition of Protoporphyrinogen Oxidase. PLoS ONE, 2013, 8, e69198.	1.1	26
71	Site-directed Mutagenesis Study of the Ile140 in Conserved Hydrophobic Core of Bcl-xL. Protein and Peptide Letters, 2012, 19, 991-996.	0.4	4
72	Conjugated Polymer-Based Real-Time Fluorescence Caspase Assays. ACS Applied Materials & Discrete Caspase Assays. ACS Applied Materials	4.0	18

YING TAN

#	Article	IF	CITATION
73	Continuous and Sensitive Acid Phosphatase Assay Based on a Conjugated Polyelectrolyte. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3784-3787.	4.0	46
74	Label-free fluorescent assays based on aptamer–target recognition. Analyst, The, 2012, 137, 2309.	1.7	23
75	Structure–activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations. Journal of Computer-Aided Molecular Design, 2011, 25, 213-222.	1.3	20
76	Structural insight into human variegate porphyria disease. FASEB Journal, 2011, 25, 653-664.	0.2	54
77	Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12943-12948.	3.3	223
78	Design, Synthesis, and 3D-QSAR Analysis of Novel 1,3,4-Oxadiazol-2(3H)-ones as Protoporphyrinogen Oxidase Inhibitors. Journal of Agricultural and Food Chemistry, 2010, 58, 2643-2651.	2.4	85
79	Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. Journal of Structural Biology, 2010, 170, 76-82.	1.3	55
80	Site-directed mutagenesis and computational study of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase. Amino Acids, 2009, 37, 523-530.	1.2	11
81	A capillary electrophoresis assay for recombinant Bacillus subtilis protoporphyrinogen oxidase. Analytical Biochemistry, 2008, 383, 200-204.	1.1	23
82	Improved Synthesis of 2â€(3H)Benzothiazolethiones under Microwave Irradiation. Synthetic Communications, 2007, 37, 369-376.	1.1	21