Anthony J Michael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596887/publications.pdf

Version: 2024-02-01

34 papers

2,008 citations

257450 24 h-index 395702 33 g-index

34 all docs

34 docs citations

times ranked

34

2217 citing authors

#	Article	IF	CITATIONS
1	Polyamines in Eukaryotes, Bacteria, and Archaea. Journal of Biological Chemistry, 2016, 291, 14896-14903.	3.4	226
2	An Alternative Polyamine Biosynthetic Pathway Is Widespread in Bacteria and Essential for Biofilm Formation in Vibrio cholerae. Journal of Biological Chemistry, 2009, 284, 9899-9907.	3.4	156
3	Biosynthesis of polyamines and polyamine-containing molecules. Biochemical Journal, 2016, 473, 2315-2329.	3.7	142
4	Spermine synthase. Cellular and Molecular Life Sciences, 2010, 67, 113-121.	5.4	126
5	Polyamine function in archaea and bacteria. Journal of Biological Chemistry, 2018, 293, 18693-18701.	3.4	124
6	Metabolomics of tomato xylem sap during bacterial wilt reveals <i>Ralstonia solanacearum</i> produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental Microbiology, 2018, 20, 1330-1349.	3.8	114
7	Evolution and Multiplicity of Arginine Decarboxylases in Polyamine Biosynthesis and Essential Role in Bacillus subtilis Biofilm Formation. Journal of Biological Chemistry, 2010, 285, 39224-39238.	3.4	103
8	Crystal Structure of Human Spermine Synthase. Journal of Biological Chemistry, 2008, 283, 16135-16146.	3.4	101
9	Alternative Spermidine Biosynthetic Route Is Critical for Growth of Campylobacter jejuni and Is the Dominant Polyamine Pathway in Human Gut Microbiota. Journal of Biological Chemistry, 2011, 286, 43301-43312.	3.4	93
10	Polyamine Oxidase5 Regulates Arabidopsis Growth through Thermospermine Oxidase Activity \hat{A} \hat{A} . Plant Physiology, 2014, 165, 1575-1590.	4.8	89
11	A Plant Pathogen Type III Effector Protein Subverts Translational Regulation to Boost Host Polyamine Levels. Cell Host and Microbe, 2019, 26, 638-649.e5.	11.0	68
12	The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Letters, 2003, 549, 26-30.	2.8	66
13	Norspermidine Is Not a Self-Produced Trigger for Biofilm Disassembly. Cell, 2014, 156, 844-854.	28.9	65
14	Evolution of a novel lysine decarboxylase in siderophore biosynthesis. Molecular Microbiology, 2012, 86, 485-499.	2.5	53
15	Phylogenetic Diversity and the Structural Basis of Substrate Specificity in the $\hat{l}^2/\hat{l}\pm$ -Barrel Fold Basic Amino Acid Decarboxylases. Journal of Biological Chemistry, 2007, 282, 27115-27125.	3.4	52
16	Evolution and Multifarious Horizontal Transfer of an Alternative Biosynthetic Pathway for the Alternative Polyamine sym-Homospermidine. Journal of Biological Chemistry, 2010, 285, 14711-14723.	3.4	51
17	A wider role for polyamines in biofilm formation. Biotechnology Letters, 2013, 35, 1715-1717.	2.2	44
18	Evolution of biosynthetic diversity. Biochemical Journal, 2017, 474, 2277-2299.	3.7	38

#	Article	IF	CITATIONS
19	Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR. Journal of Biological Chemistry, 2017, 292, 12041-12053.	3.4	34
20	Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, <i>N</i> -methylate and transfer long chain polyamines in diatoms. FEBS Letters, 2011, 585, 2627-2634.	2.8	33
21	The Essential Role of Spermidine in Growth of <i>Agrobacterium tumefaciens</i> Is Determined by the 1,3-Diaminopropane Moiety. ACS Chemical Biology, 2016, 11, 491-499.	3.4	31
22	Polyamineâ€independent growth and biofilm formation, and functional spermidine/spermine <i>N</i> â€acetyltransferases in <i>Staphylococcus aureus</i> and <i>Enterococcus faecalis</i> Molecular Microbiology, 2019, 111, 159-175.	2.5	28
23	Functional Identification of Putrescine <i>C</i> - and <i>N</i> -Hydroxylases. ACS Chemical Biology, 2016, 11, 2782-2789.	3.4	26
24	Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens. Journal of Bacteriology, 2016, 198, 2682-2691.	2.2	25
25	Evolution of Substrate Specificity within a Diverse Family of \hat{l}^2/\hat{l}_\pm -Barrel-fold Basic Amino Acid Decarboxylases. Journal of Biological Chemistry, 2010, 285, 25708-25719.	3.4	24
26	Homospermidine biosynthesis in the cyanobacterium <i>Anabaena</i> requires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Molecular Microbiology, 2018, 109, 763-780.	2.5	23
27	Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing <i>de novo</i> diamine to triamine formation. Molecular Microbiology, 2011, 81, 1109-1124.	2.5	20
28	Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates <scp><i>T</i></scp> <i>etrahymena thermophila</i> and <scp><i>P</i></scp> <i>aramecium tetaurelia</i> . Molecular Microbiology, 2015, 97, 791-807.	2.5	14
29	Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide. Amino Acids, 2012, 42, 519-527.	2.7	10
30	Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. Journal of Biological Chemistry, 2021, 297, 101219.	3.4	10
31	Alternative pathways utilize or circumvent putrescine for biosynthesis of putrescine-containing rhizoferrin. Journal of Biological Chemistry, 2021, 296, 100146.	3.4	8
32	A polyamine-independent role for <i>S</i> -adenosylmethionine decarboxylase. Biochemical Journal, 2019, 476, 2579-2594.	3.7	7
33	Exploring Polyamine Biosynthetic Diversity Through Comparative and Functional Genomics. Methods in Molecular Biology, 2011, 720, 39-50.	0.9	4
34	Sensing spermidine through tongue-tied translation prevents too much of a good thing. Molecular Cell, 2021, 81, 3882-3883.	9.7	0