
Rachel C Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. Coordination Chemistry Reviews, 2006, 250, 2093-2126.	9.5	1,029
2	Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Advanced Materials, 2017, 29, 1606491.	11.1	174
3	Laboratory protocols for measuring and reporting the performance of luminescent solar concentrators. Energy and Environmental Science, 2021, 14, 293-301.	15.6	99
4	Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization. Journal of the American Chemical Society, 2018, 140, 5682-5685.	6.6	84
5	Cationic Polythiophene–Surfactant Self-Assembly Complexes: Phase Transitions, Optical Response, and Sensing. Langmuir, 2012, 28, 12348-12356.	1.6	77
6	Structure and "Surfactochromic―Properties of Conjugated Polyelectrolyte (CPE): Surfactant Complexes between a Cationic Polythiophene and SDS in Water. Langmuir, 2010, 26, 15634-15643.	1.6	70
7	All-conjugated polyelectrolyteblock copolymers. Journal of Materials Chemistry, 2010, 20, 1423-1430.	6.7	67
8	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
9	Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. Journal of Materials Chemistry, 2008, 18, 1100.	6.7	62
10	A Novel Luminescence-Based Colorimetric Oxygen Sensor with a "Traffic Light―Response. Journal of Fluorescence, 2006, 16, 201-206.	1.3	61
11	Design and Response of Highâ€Efficiency, Planar, Doped Luminescent Solar Concentrators Using Organic–Inorganic Diâ€Ureasil Waveguides. Advanced Optical Materials, 2016, 4, 444-456.	3.6	59
12	Emission spectroscopy of uranium(iv) compounds: a combined synthetic, spectroscopic and computational study. RSC Advances, 2013, 3, 4350.	1.7	57
13	Harnessing self-assembly strategies for the rational design of conjugated polymer based materials. Journal of Materials Chemistry C, 2013, 1, 4190.	2.7	54
14	Effects of heating and post-heating equilibration times on soil water repellency. Soil Research, 2005, 43, 261.	0.6	50
15	Enhancing the stability of organolead halide perovskite films through polymer encapsulation. RSC Advances, 2017, 7, 32942-32951.	1.7	48
16	Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells. Journal of Materials Chemistry A, 2018, 6, 2671-2680.	5.2	46
17	Luminescent Solar Concentrators Based on Energy Transfer from an Aggregation-Induced Emitter Conjugated Polymer. ACS Applied Polymer Materials, 2019, 1, 3039-3047.	2.0	42
18	Conjugated polyelectrolyte (CPE) poly[3-[6-(N-methylimidazolium)hexyl]-2,5-thiophene] complexed with aqueous sodium dodecylsulfate amphiphile: synthesis, solution structure and "surfactochromic― properties. Soft Matter, 2011, 7, 6863.	1.2	41

RACHEL C EVANS

#	Article	IF	CITATIONS
19	Chain confinement promotes β-phase formation in polyfluorene-based photoluminescent ionogels. Chemical Communications, 2012, 48, 3742.	2.2	40
20	Controlling the Color Space Response of Colorimetric Luminescent Oxygen Sensors. Analytical Chemistry, 2006, 78, 5645-5652.	3.2	39
21	Design and Color Response of Colorimetric Multilumophore Oxygen Sensors. ACS Applied Materials & Interfaces, 2009, 1, 1023-1030.	4.0	39
22	3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures. Advanced Functional Materials, 2022, 32, .	7.8	38
23	Applied Photochemistry. , 2013, , .		37
24	Cationic fluorene-thiophene diblock copolymers: Aggregation behaviour in methanol/water and its relation to thin film structures. Polymer, 2010, 51, 1898-1903.	1.8	33
25	Tunable Whiteâ€Light Emission from Conjugated Polymerâ€Diâ€Ureasil Materials. Advanced Functional Materials, 2016, 26, 532-542.	7.8	33
26	Unlocking Structure–Self-Assembly Relationships in Cationic Azobenzene Photosurfactants. Langmuir, 2018, 34, 10123-10134.	1.6	33
27	Fluorene Based Conjugated Polyelectrolyte/Silica Nanocomposites: Chargeâ€Mediated Phase Aggregation at the Organic–Inorganic Interface. Advanced Materials, 2010, 22, 3032-3037.	11.1	32
28	Thermoresponsive Host Polymer Matrix for Self-Healing Luminescent Solar Concentrators. ACS Applied Energy Materials, 2020, 3, 1152-1160.	2.5	32
29	Solvent Dependent Assembly of a Polyfluoreneâ^'Polythiophene "Rodâ^'Rod―Block Copolyelectrolyte: Influence on Photophysical Properties. Langmuir, 2010, 26, 5056-5066.	1.6	28
30	Synergistic photoluminescence enhancement in conjugated polymer-di-ureasil organic–inorganic composites. Chemical Science, 2015, 6, 7227-7237.	3.7	27
31	Probing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time. Soft Matter, 2019, 15, 1253-1259.	1.2	27
32	Post-Synthetic Modification of a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 2187-2196.	3.2	27
33	Targeted design leads to tunable photoluminescence from perylene dicarboxdiimide–poly(oxyalkylene)/siloxane hybrids for luminescent solar concentrators. Journal of Materials Chemistry C, 2016, 4, 4049-4059.	2.7	23
34	Threading the Needle: Fluorescent Poly- <i>pseudo</i> -rotaxanes for Size-Exclusion Sensing. Chemistry of Materials, 2016, 28, 2685-2691.	3.2	20
35	Organic Polymer Hosts for Triplet–Triplet Annihilation Upconversion Systems. Macromolecules, 2021, 54, 5287-5303.	2.2	20
36	Förster Resonance Energy Transfer in Luminescent Solar Concentrators. Advanced Science, 2022, 9, .	5.6	20

RACHEL C EVANS

#	Article	IF	CITATIONS
37	Energy Transfer and Emission Decay Kinetics in Mixed Microporous Lanthanide Silicates with Unusual Dimensionality. Journal of Physical Chemistry C, 2008, 112, 260-268.	1.5	19
38	On the flocculation and re-dissolution of trivalent lanthanide metal ions by sodium dodecyl sulfate in aqueous solutions. Journal of Colloid and Interface Science, 2011, 354, 670-676.	5.0	19
39	All-conjugated cationic copolythiophene "rod–rod―block copolyelectrolytes: synthesis, optical properties and solvent-dependent assembly. Polymer Chemistry, 2014, 5, 3352-3362.	1.9	18
40	Charge-Mediated Localization of Conjugated Polythiophenes in Zwitterionic Model Cell Membranes. Langmuir, 2016, 32, 8141-8153.	1.6	18
41	Molecular design of interfacial layers based on conjugated polythiophenes for polymer and hybrid solar cells. Polymer International, 2017, 66, 1333-1348.	1.6	18
42	Ureasil organic–inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators. Materials Chemistry Frontiers, 2017, 1, 2271-2282.	3.2	18
43	Self-assembled conjugated polyelectrolyte–surfactant complexes as efficient cathode interlayer materials for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23905-23916.	5.2	16
44	Flexible Optical Amplifier for Visible-Light Communications Based on Organic–Inorganic Hybrids. ACS Omega, 2018, 3, 13772-13781.	1.6	16
45	A single-component photorheological fluid with light-responsive viscosity. Nanoscale, 2020, 12, 6300-6306.	2.8	16
46	Guest size limitation in metal–organic framework crystal–glass composites. Journal of Materials Chemistry A, 2021, 9, 8386-8393.	5.2	15
47	Regioregular Polythiophene–Porphyrin Supramolecular Copolymers for Optoelectronic Applications. Macromolecular Chemistry and Physics, 2016, 217, 445-458.	1.1	14
48	A self-assembly toolbox for thiophene-based conjugated polyelectrolytes: surfactants, solvent and copolymerisation. Nanoscale, 2017, 9, 17481-17493.	2.8	14
49	Aggregation-induced emission from silole-based lumophores embedded in organic–inorganic hybrid hosts. Journal of Materials Chemistry C, 2021, 9, 13914-13925.	2.7	14
50	Concentration Effect on the Oriented Microstructure in Tensile Drawn Polyfluoreneâ^'Polyethylene Blend. Macromolecules, 2010, 43, 299-305.	2.2	13
51	Lighting Up Two-Dimensional Lanthanide Phosphonates: Tunable Structure–Property Relationships toward Visible and Near-Infrared Emitters. Journal of Physical Chemistry C, 2014, 118, 10291-10301.	1.5	13
52	Expanding the light absorption of poly(3-hexylthiophene) by end-functionalization with π-extended porphyrins. Chemical Communications, 2016, 52, 171-174.	2.2	13
53	Targeted β-Phase Formation in Poly(fluorene)–Ureasil Grafted Organic–Inorganic Hybrids. Macromolecules, 2017, 50, 4235-4243.	2.2	13
54	Charge-modulated self-assembly and growth of conjugated polyelectrolyte–polyoxometalate hybrid networks. Chemical Communications, 2014, 50, 5233-5235.	2.2	12

RACHEL C EVANS

#	Article	IF	CITATIONS
55	Multimodal control of liquid crystalline mesophases from surfactants with photoswitchable tails. Journal of Materials Chemistry C, 2019, 7, 10945-10952.	2.7	12
56	Sequential detection of multiple phase transitions in model biological membranes using a red-emitting conjugated polyelectrolyte. Physical Chemistry Chemical Physics, 2016, 18, 12423-12427.	1.3	11
57	Flexible Blue-Light Fiber Amplifiers to Improve Signal Coverage in Advanced Lighting Communication Systems. Cell Reports Physical Science, 2020, 1, 100041.	2.8	11
58	The Role of Polyhedral Oligomeric Silsesquioxanes in Optical Applications. Advanced Photonics Research, 2021, 2, 2000196.	1.7	10
59	Sugar-derived organogels as templates for structured, photoluminescent conjugated polymer–inorganic hybrid materials. Chemical Communications, 2013, 49, 6155.	2.2	9
60	Synthetic factors affecting the stability of methylammonium lead halide perovskite nanocrystals. Nanoscale, 2020, 12, 11694-11702.	2.8	9
61	Photophysics and Electrochemistry of some Thione Far-Red/Near-IR Triplet Emitters. Journal of Fluorescence, 2009, 19, 169-177.	1.3	8
62	Molecular Transport Directed via Patterned Functionalized Surfaces. Advanced Materials, 2011, 23, 1739-1743.	11.1	7
63	Selective recognition of biologically important anions using a diblock polyfluorene–polythiophene conjugated polyelectrolyte. Polymer Chemistry, 2017, 8, 7151-7159.	1.9	7
64	Synthesis and characterisation of biocompatible organic–inorganic core–shell nanocomposite particles based on ureasils. Journal of Materials Chemistry B, 2020, 8, 4908-4916.	2.9	6
65	The reactivity of an inorganic glass melt with ZIF-8. Dalton Transactions, 2021, 50, 3529-3535.	1.6	5
66	Dual-template approach to hierarchically porous polymer membranes. Materials Chemistry Frontiers, 2021, 5, 783-791.	3.2	4
67	Phosphoniumâ€based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, selfâ€assembly and photovoltaic performances. Polymer International, 2021, 70, 457-466.	1.6	4
68	Light-responsive self-assembly of a cationic azobenzene surfactant at high concentration. Soft Matter, 2020, 16, 9183-9187.	1.2	3
69	Foundations of Photochemistry: A Background on the Interaction Between Light and Molecules. , 2013, , 1-88.		2
70	The Photochemical Laboratory. , 2013, , 467-531.		2
71	Flexible photoluminescent waveguide amplifiers to improve visible light communication platforms. IET Optoelectronics, 2020, 14, 356-358.	1.8	2
72	Optical Sensors and Probes. , 2013, , 403-434.		1

5

#	Article	IF	CITATIONS
73	Photochemical Materials: Absorbers, Emitters, Displays, Sensitisers, Acceptors, Traps and Photochromics. , 2013, , 149-216.		1
74	Innovative and multifunctional materials as optical amplifiers for cooperative visible light communications. , 2019, , .		0