Pavel Kovarik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596505/publications.pdf

Version: 2024-02-01

59 papers

5,741 citations

36 h-index 57 g-index

64 all docs

64 docs citations

64 times ranked 11102 citing authors

#	Article	IF	CITATIONS
1	Nonredundancy of IL- $1\hat{l}_{\pm}$ and IL- $1\hat{l}_{2}^{2}$ is defined by distinct regulation of tissues orchestrating resistance versus tolerance to infection. Science Advances, 2022, 8, eabj7293.	4.7	15
2	Conceptual Advances in Control of Inflammation by the RNA-Binding Protein Tristetraprolin. Frontiers in Immunology, 2021, 12, 751313.	2.2	13
3	The ubiquitin ligase HOIL-1L regulates immune responses by interacting with linear ubiquitin chains. IScience, 2021, 24, 103241.	1.9	3
4	Context-Dependent IL-1 mRNA-Destabilization by TTP Prevents Dysregulation of Immune Homeostasis Under Steady State Conditions. Frontiers in Immunology, 2020, 11, 1398.	2.2	19
5	Dysregulated NADPH Oxidase Promotes Bone Damage in Murine Model of Autoinflammatory Osteomyelitis. Journal of Immunology, 2020, 204, 1607-1620.	0.4	6
6	Transcriptional Responses to IFN- \hat{l}^3 Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell, 2019, 76, 485-499.e8.	4.5	52
7	Crucial Role of Nucleic Acid Sensing via Endosomal Toll-Like Receptors for the Defense of Streptococcus pyogenes in vitro and in vivo. Frontiers in Immunology, 2019, 10, 198.	2.2	14
8	The C-Terminal Transactivation Domain of STAT1 Has a Gene-Specific Role in Transactivation and Cofactor Recruitment. Frontiers in Immunology, 2018, 9, 2879.	2.2	14
9	The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host and Microbe, 2018, 23, 766-774.e5.	5.1	65
10	Competition of <i>Candida glabrata </i> against <i> Lactobacillus </i> is Hog1 dependent. Cellular Microbiology, 2018, 20, e12943.	1.1	13
11	Posttranscriptional regulation of cytokine expression. Cytokine, 2017, 89, 21-26.	1.4	24
12	HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Research, 2017, 77, 2424-2438.	0.4	75
13	The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. Journal of Clinical Investigation, 2017, 127, 2051-2065.	3.9	28
14	Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLoS Pathogens, 2017, 13, e1006696.	2.1	54
15	Type I Interferons in Bacterial Infections: A Balancing Act. Frontiers in Immunology, 2016, 7, 652.	2.2	90
16	The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes. PLoS Pathogens, 2016, 12, e1006032.	2.1	12
17	Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammationÂresolution. Molecular Systems Biology, 2016, 12, 868.	3.2	74
18	AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Research, 2016, 44, D90-D95.	6.5	77

#	Article	IF	CITATIONS
19	Type I Interferon Signaling Prevents IL- $\hat{1}^2$ -Driven Lethal Systemic Hyperinflammation during Invasive Bacterial Infection of Soft Tissue. Cell Host and Microbe, 2016, 19, 375-387.	5.1	88
20	Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2. PLoS ONE, 2015, 10, e0119727.	1.1	37
21	Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner. Cancer Research, 2015, 75, 3054-3064.	0.4	35
22	Promoter Occupancy of STAT1 in Interferon Responses Is Regulated by Processive Transcription. Molecular and Cellular Biology, 2015, 35, 716-727.	1.1	15
23	The Innate Immune Response Elicited by Group A Streptococcus Is Highly Variable among Clinical Isolates and Correlates with the emm Type. PLoS ONE, 2014, 9, e101464.	1.1	24
24	Responses of innate immune cells to group A Streptococcus. Frontiers in Cellular and Infection Microbiology, 2014, 4, 140.	1.8	44
25	Type I Interferons in Immune Defense Against Streptococci. , 2014, , 43-59.		0
26	CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response. Immunity, 2013, 38, 250-262.	6.6	220
27	AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Research, 2011, 39, D66-D69.	6.5	140
28	Type I Interferon Production Induced by Streptococcus pyogenes-Derived Nucleic Acids Is Required for Host Protection. PLoS Pathogens, 2011, 7, e1001345.	2.1	110
29	Tristetraprolinâ€driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Molecular Systems Biology, 2011, 7, 560.	3.2	110
30	Regulation of <i>Candida glabrata </i> oxidative stress resistance is adapted to host environment. FEBS Letters, 2011, 585, 319-327.	1.3	74
31	Transcriptome analysis reveals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon-responsive and metabolic genes. BMC Genomics, 2010, 11, 199.	1.2	19
32	Autophagy supports <i>Candida glabrata</i> survival during phagocytosis. Cellular Microbiology, 2010, 12, 199-216.	1.1	132
33	Tyrosine Kinase 2 Controls IL- $\hat{1}^2$ Production at the Translational Level. Journal of Immunology, 2010, 185, 3544-3553.	0.4	24
34	Tristetraprolin Is Required for Full Anti-Inflammatory Response of Murine Macrophages to IL-10. Journal of Immunology, 2009, 183, 1197-1206.	0.4	96
35	Unexpected role of STAT1 serine727 for NK cell function. BMC Pharmacology, 2009, 9, .	0.4	0
36	Molecular mechanisms of the anti-inflammatory functions of interferons. Immunobiology, 2008, 212, 895-901.	0.8	32

#	Article	IF	Citations
37	180 Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain. Cytokine, 2008, 43, 282.	1.4	1
38	Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9. Journal of Biological Chemistry, 2008, 283, 19879-19887.	1.6	80
39	Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8944-8949.	3.3	130
40	Nine-amino-acid transactivation domain: Establishment and prediction utilities. Genomics, 2007, 89, 756-768.	1.3	126
41	Interferons limit inflammatory responses by induction of tristetraprolin. Blood, 2006, 107, 4790-4797.	0.6	136
42	Phosphorylation of the Stat1 transactivating domain is required for the response to type I interferons. EMBO Reports, 2003, 4, 368-373.	2.0	61
43	Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature Immunology, 2003, 4, 471-477.	7.0	337
44	Regulation of STATs by Posttranslational Modifications. , 2003, , 207-222.		1
45	p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12859-12864.	3.3	119
46	IFNs and STATs in innate immunity to microorganisms. Journal of Clinical Investigation, 2002, 109, 1271-1277.	3.9	172
47	IFNs and STATs in innate immunity to microorganisms. Journal of Clinical Investigation, 2002, 109, 1271-1277.	3.9	112
48	Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO Journal, 2001, 20, 91-100.	3.5	171
49	Rpg1p, the subunit of theSaccharomyces cerevisiae elF3 core complex, is a microtubule-interacting protein. Cytoskeleton, 2000, 45, 235-246.	4.4	22
50	Serine phosphorylation of STATs. Oncogene, 2000, 19, 2628-2637.	2.6	790
51	Partial Impairment of Cytokine Responses in Tyk2-Deficient Mice. Immunity, 2000, 13, 549-560.	6.6	375
52	Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13956-13961.	3.3	253
53	Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN- \hat{l}^3 , but not IFN- \hat{l}^4 , signaling. EMBO Journal, 1999, 18, 2480-2488.	3.5	131
54	Transcription factor activity of STAT proteins: structural requirements and regulation by phosphorylation and interacting proteins. Cellular and Molecular Life Sciences, 1999, 55, 1535-1546.	2.4	95

#	Article	IF	CITATIONS
55	<i>Salmonella typhimurium</i> and Lipopolysaccharide Stimulate Extracellularly Regulated Kinase Activation in Macrophages by a Mechanism Involving Phosphatidylinositol 3-Kinase and Phospholipase D as Novel Intermediates. Infection and Immunity, 1999, 67, 1011-1017.	1.0	66
56	Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO Journal, 1998, 17, 3660-3668.	3 . 5	220
57	RPG1: an essential gene of Saccharomyces cerevisiae encoding a 110-kDa protein required for passage through the G1 phase. Current Genetics, 1998, 33, 100-109.	0.8	29
58	GAS Elements: A Few Nucleotides with a Major Impact on Cytokine-Induced Gene Expression. Journal of Interferon and Cytokine Research, 1997, 17, 121-134.	0.5	373
59	Non-methylated islands in fish genomes are GC-poor. Nucleic Acids Research, 1991, 19, 1469-1474.	6.5	43