
Jürgen V Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596426/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of nonâ€stationarity on <scp>SPI</scp> for operational drought monitoring in Europe. International Journal of Climatology, 2022, 42, 3418-3430.	3.5	20
2	A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO). Natural Hazards and Earth System Sciences, 2021, 21, 481-495.	3.6	29
3	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	3.5	26
4	Global populationâ€weighted degreeâ€day projections for a combination of climate and socioâ€economic scenarios. International Journal of Climatology, 2021, 41, 5447-5464.	3.5	5
5	How will the progressive global increase of arid areas affect population and land-use in the 21st century?. Global and Planetary Change, 2021, 205, 103597.	3.5	37
6	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	3.2	230
7	Clobal-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences, 2020, 20, 695-712.	3.6	136
8	Evaluation of a New Precipitation-Based Index for Global Seasonal Forecasting of Unusually Wet and Dry Periods. Weather and Forecasting, 2020, 35, 1189-1202.	1.4	3
9	Predictability of the European heat and cold waves. Climate Dynamics, 2019, 52, 2481-2495.	3.8	25
10	Analysing the Relationship between Multiple-Timescale SPI and GRACE Terrestrial Water Storage in the Framework of Drought Monitoring. Water (Switzerland), 2019, 11, 1672.	2.7	16
11	Non-stationarity in MODIS fAPAR time-series and its impact on operational drought detection. International Journal of Remote Sensing, 2019, 40, 1428-1444.	2.9	7
12	Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina. Geosciences (Switzerland), 2019, 9, 39.	2.2	14
13	Harmonization of GEOV2 fAPAR time series through MODIS data for global drought monitoring. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 1-12.	2.8	18
14	Mapping European ecosystem change types in response to landâ€use change, extreme climate events, and land degradation. Land Degradation and Development, 2019, 30, 951-963.	3.9	34
15	A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 2019, 22, 100593.	2.4	178
16	Global Changes in Drought Conditions Under Different Levels of Warming. Geophysical Research Letters, 2018, 45, 3285-3296.	4.0	442
17	Will drought events become more frequent and severe in Europe?. International Journal of Climatology, 2018, 38, 1718-1736.	3.5	553
18	Changes of heating and cooling degreeâ€days in Europe from 1981 to 2100. International Journal of Climatology, 2018, 38, e191.	3.5	123

Jürgen V Vogt

#	Article	IF	CITATIONS
19	On the use of weather regimes to forecast meteorological drought over Europe. Natural Hazards and Earth System Sciences, 2018, 18, 3297-3309.	3.6	27
20	Towards a monitoring system of temperature extremes in Europe. Natural Hazards and Earth System Sciences, 2018, 18, 91-104.	3.6	36
21	Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change, 2017, 148, 113-130.	3.5	177
22	Comparing soil moisture anomalies from multiple independent sources over different regions across the globe. Hydrology and Earth System Sciences, 2017, 21, 6329-6343.	4.9	36
23	Drought Risk Management: Needs and Experiences in Europe. Drought and Water Crises, 2017, , 385-408.	0.1	0
24	Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 2016, 20, 2779-2800.	4.9	126
25	Recent temporal trend in modelled soil water deficit over Europe driven by meteorological observations. International Journal of Climatology, 2016, 36, 4903-4912.	3.5	4
26	A novel soil moistureâ€based drought severity index (DSI) combining water deficit magnitude and frequency. Hydrological Processes, 2016, 30, 289-301.	2.6	55
27	Assessment of drought damages and their uncertainties in Europe. Environmental Research Letters, 2015, 10, 124013.	5.2	49
28	On the Role of Land Surface Temperature as Proxy of Soil Moisture Status for Drought Monitoring in Europe. Remote Sensing, 2015, 7, 16849-16864.	4.0	30
29	Early warning of drought in Europe using the monthly ensemble system from ECMWF. Hydrology and Earth System Sciences, 2015, 19, 3273-3286.	4.9	20
30	Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region. Hydrology and Earth System Sciences, 2015, 19, 177-193.	4.9	24
31	Analyzing the Combined Drought Indicator (CDI): Demonstration and Analysis of its Evolution during Spring and Summer 2013- 2014. Agriculture and Agricultural Science Procedia, 2015, 4, 222-231.	0.6	5
32	Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology, 2015, 35, 1322-1341.	3.5	152
33	European drought climatologies and trends based on a multi-indicator approach. Global and Planetary Change, 2015, 127, 50-57.	3.5	154
34	On the value of combining different modelled soil moisture products for European drought monitoring. Journal of Hydrology, 2015, 525, 547-558.	5.4	26
35	The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies, 2015, 3, 509-524.	2.4	232
36	Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology, 2015, 35, 4197-4209.	3.5	100

Jürgen V Vogt

#	Article	IF	CITATIONS
37	Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. International Journal of Climatology, 2015, 35, 2210-2222.	3.5	140
38	European degreeâ€day climatologies and trends for the period 1951–2011. International Journal of Climatology, 2015, 35, 25-36.	3.5	116
39	Spatial patterns of European droughts under a moderate emission scenario. Advances in Science and Research, 2015, 12, 179-186.	1.0	38
40	Comparison of drought indicators derived from multiple data sets over Africa. Hydrology and Earth System Sciences, 2014, 18, 1625-1640.	4.9	72
41	Global meteorological drought – Part 2: Seasonal forecasts. Hydrology and Earth System Sciences, 2014, 18, 2669-2678.	4.9	59
42	Global meteorological drought – Part 1: Probabilistic monitoring. Hydrology and Earth System Sciences, 2014, 18, 2657-2667.	4.9	36
43	World drought frequency, duration, and severity for 1951-2010. International Journal of Climatology, 2014, 34, 2792-2804.	3.5	500
44	Exploring drought vulnerability in Africa: an indicator based analysis to be used in early warning systems. Hydrology and Earth System Sciences, 2014, 18, 1591-1604.	4.9	115
45	Combining land surface models and remote sensing data to estimate evapotranspiration for drought monitoring in Europe. Proceedings of SPIE, 2014, , .	0.8	2
46	Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,500.	3.3	390
47	An Optimized System for the Classification of Meteorological Drought Intensity with Applications in Drought Frequency Analysis. Journal of Applied Meteorology and Climatology, 2014, 53, 1943-1960.	1.5	26
48	Assessment of the EUMETSAT LSA-SAF evapotranspiration product for drought monitoring in Europe. International Journal of Applied Earth Observation and Geoinformation, 2014, 30, 190-202.	2.8	22
49	An overview of drought events in the Carpathian Region in 1961–2010. Advances in Science and Research, 2013, 10, 21-32.	1.0	97
50	Toward Global Drought Early Warning Capability: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting. Bulletin of the American Meteorological Society, 2013, 94, 776-785.	3.3	142
51	Projection of occurrence of extreme dryâ€wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7628-7639.	3.3	92
52	Combining satellite derived phenology with climate data for climate change impact assessment. Global and Planetary Change, 2012, 88-89, 85-97.	3.5	61
53	Monitoring Drought Conditions and Their Uncertainties in Africa Using TRMM Data. Journal of Applied Meteorology and Climatology, 2012, 51, 1867-1874.	1.5	93
54	Development of a Combined Drought Indicator to detect agricultural drought in Europe. Natural Hazards and Earth System Sciences, 2012, 12, 3519-3531.	3.6	222

JüRGEN V VOGT

#	Article	IF	CITATIONS
55	The european drought observatory. , 2011, , .		12
56	Testing two different precipitation datasets to compute the standardized precipitation index over the Horn of Africa. International Journal of Remote Sensing, 2011, 32, 5947-5964.	2.9	17
57	Science for improving the monitoring and assessment of dryland degradation. Land Degradation and Development, 2011, 22, 145-149.	3.9	39
58	Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degradation and Development, 2011, 22, 150-165.	3.9	190
59	Development and demonstration of a structured hydrological feature coding system for Europe. Hydrological Sciences Journal, 2010, 55, 661-675.	2.6	55
60	Requirements for data management and maintenance to support regional land use research. , 2008, , 269-290.		2
61	Weighting and aggregation of indicators for sustainability impact assessment in the SENSOR context. , 2008, , 349-372.		9
62	Deriving river networks and catchments at the European scale from medium resolution digital elevation data. Catena, 2007, 70, 296-305.	5.0	52
63	Land suitability assessment methods for developing a European Land Information System for Agriculture and Environment (ELISA). , 2007, , 225-250.		2
64	Development of a pan-European River and Catchment Database. Lecture Notes in Geoinformation and Cartography, 2007, , 121-144.	1.0	68
65	Integrating information on river networks, catchments and major forest types: towards the characterisation and analysis of European landscapes. Landscape and Urban Planning, 2004, 67, 27-41.	7.5	5
66	Carving and adaptive drainage enforcement of grid digital elevation models. Water Resources Research, 2003, 39, .	4.2	125
67	Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics. Geomorphology, 2003, 53, 281-298.	2.6	107
68	Comparison of a Satellite-Based and a Precipitation-Based Drought Index. Canadian Journal of Remote Sensing, 2000, 26, 580-583.	2.4	2
69	Development of an operational low-flow index for hydrological drought monitoring over Europe. Hydrological Sciences Journal, 0, , 1-13.	2.6	16
70	Towards Global Drought Early Warning Capability: Expanding international cooperation for the development of a framework for global drought monitoring and forecasting. Bulletin of the American Meteorological Society, 0, , 130121120822004.	3.3	7