
Nai-Xing Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596118/publications.pdf Version: 2024-02-01

NAL-XINC YE

#	Article	IF	CITATIONS
1	Metabolite profiling in albino tea mutant Camellia sinensis â€~Fuyun 6' using LC–ESI–MS/MS. Trees - Structure and Function, 2022, 36, 261-272.	1.9	3
2	Macro-composition quantification combined with metabolomics analysis uncovered key dynamic chemical changes of aging white tea. Food Chemistry, 2022, 366, 130593.	8.2	17
3	Aroma analysis of Fuyun 6 and Jinguanyin black tea in the Fu'an area based on E-nose and GC–MS. European Food Research and Technology, 2022, 248, 947-961.	3.3	15
4	Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Horticultural Plant Journal, 2022, 8, 381-394.	5.0	31
5	Changes in Non-Volatile and Volatile Metabolites Associated with Heterosis in Tea Plants (<i>Camellia) Tj ETQq1</i>	1 0.7843] 5.2	l4 ggBT /Ove
6	Genomes of single―and doubleâ€petal jasmines (<i>Jasminum sambac</i>) provide insights into their divergence time and structural variations. Plant Biotechnology Journal, 2022, 20, 1232-1234.	8.3	11
7	Lipidomics analysis unravels changes from flavor precursors in different processing treatments of purpleâ€leaf tea. Journal of the Science of Food and Agriculture, 2022, 102, 3730-3741.	3.5	17
8	Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). LWT - Food Science and Technology, 2022, 164, 113666.	5.2	21
9	Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry, 2021, 160, 27-36.	5.8	27
10	Chromatin accessibility and translational landscapes of tea plants under chilling stress. Horticulture Research, 2021, 8, 96.	6.3	28
11	Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research, 2021, 8, 107.	6.3	80
12	R2R3-MYB transcription factor family in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics, 2021, 113, 1565-1578.	2.9	45
13	Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 2021, 53, 1250-1259.	21.4	157
14	Architecture and Dynamics of the Wounding-Induced Gene Regulatory Network During the Oolong Tea Manufacturing Process (Camellia sinensis). Frontiers in Plant Science, 2021, 12, 788469.	3.6	11
15	Identification of Co-Expressed Genes Related to Theacrine Synthesis in Tea Flowers at Different Developmental Stages. International Journal of Molecular Sciences, 2021, 22, 13394.	4.1	6
16	Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers. Tree Genetics and Genomes, 2020, 16, 1.	1.6	24
17	Rapid and direct identification of the origin of white tea with proton transfer reaction timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8830.	1.5	10
18	Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis Pathway in a Purple-Leaf Tea Germplasm Jinmingzao and a Green-Leaf Tea Germplasm Huangdan reveals Their Relationship with Genetic Mechanisms of Color Formation. International Journal of Molecular Sciences, 2020, 21, 4167.	4.1	40

NAI-XING YE

#	Article	IF	CITATIONS
19	Transcriptome and metabolite analyses provide insights into zigzag-shaped stem formation in tea plants (Camellia sinensis). BMC Plant Biology, 2020, 20, 98.	3.6	9
20	Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta, 2020, 252, 10.	3.2	7
21	Exploration of the Effects of Different Blue LED Light Intensities on Flavonoid and Lipid Metabolism in Tea Plants via Transcriptomics and Metabolomics. International Journal of Molecular Sciences, 2020, 21, 4606.	4.1	52
22	Widely Targeted Metabolomic and Transcriptomic Analyses of a Novel Albino Tea Mutant of "Rougui― Forests, 2020, 11, 229.	2.1	25
23	Integrative Transcriptomic and Metabolic Analyses Provide Insights into the Role of Trichomes in Tea Plant (Camellia Sinensis). Biomolecules, 2020, 10, 311.	4.0	16
24	Comparison of Volatiles in Different Jasmine Tea Grade Samples Using Electronic Nose and Automatic Thermal Desorption-Gas Chromatography-Mass Spectrometry Followed by Multivariate Statistical Analysis. Molecules, 2020, 25, 380.	3.8	28
25	Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Scientific Reports, 2020, 10, 2792.	3.3	23
26	Identification, expression, and putative target gene analysis of nuclear factor-Y (NF-Y) transcription factors in tea plant (Camellia sinensis). Planta, 2019, 250, 1671-1686.	3.2	26
27	Identification of CBF Transcription Factors in Tea Plants and a Survey of Potential CBF Target Genes under Low Temperature. International Journal of Molecular Sciences, 2019, 20, 5137.	4.1	34
28	Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant (Camellia Sinensis). Molecules, 2019, 24, 3380.	3.8	27
29	Determination of 21 free amino acids in 5 types of tea by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS) using a modified 6-aminoquinolyI-N-hydroxysuccinimidyl carbamate (AQC) method. Journal of Food Composition and Analysis, 2019, 81, 46-54.	3.9	30
30	Genome-wide identification of WOX genes and their expression patterns under different hormone and abiotic stress treatments in tea plant (Camellia sinensis). Trees - Structure and Function, 2019, 33, 1129-1142.	1.9	22
31	Identification and comparison of oligopeptides during withering process of White tea by ultra-high pressure liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Research International, 2019, 121, 825-834.	6.2	18
32	Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea. Food Chemistry, 2019, 277, 289-297.	8.2	67
33	Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Genes and Genomics, 2019, 41, 17-33.	1.4	59
34	Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Reports, 2018, 37, 425-441.	5.6	34
35	Identification and Expression Analyses of SBP-Box Genes Reveal Their Involvement in Abiotic Stress and Hormone Response in Tea Plant (Camellia sinensis). International Journal of Molecular Sciences, 2018, 19, 3404.	4.1	25
36	Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots. Journal of Plant Physiology, 2018, 229, 41-52.	3.5	16

NAI-XING YE

#	Article	IF	CITATIONS
37	Hydrophilic interaction liquid chromatography coupled with quadrupole-orbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process. Food Chemistry, 2018, 266, 343-349.	8.2	29
38	Identification of the Origin of White Tea Based on Mineral Element Content. Food Analytical Methods, 2017, 10, 191-199.	2.6	36
39	Volatiles Emitted at Different Flowering Stages of Jasminum sambac and Expression of Genes Related to α-Farnesene Biosynthesis. Molecules, 2017, 22, 546.	3.8	53