
Fangbin Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8596033/publications.pdf Version: 2024-02-01

FANCRIN CAO

#	Article	IF	CITATIONS
1	Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.). Environmental Science and Pollution Research, 2022, 29, 20721-20730.	5.3	8
2	Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theoretical and Applied Genetics, 2022, 135, 709-721.	3.6	10
3	An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. Journal of Hazardous Materials, 2021, 401, 123371.	12.4	33
4	Metabolome Analysis Revealed the Mechanism of Exogenous Glutathione to Alleviate Cadmium Stress in Maize (Zea mays L.) Seedlings. Plants, 2021, 10, 105.	3.5	23
5	Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity. International Journal of Molecular Sciences, 2021, 22, 13100.	4.1	7
6	Genome-Wide Discovery of miRNAs with Differential Expression Patterns in Responses to Salinity in the Two Contrasting Wheat Cultivars. International Journal of Molecular Sciences, 2021, 22, 12556.	4.1	10
7	Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.). Chemosphere, 2020, 240, 124907.	8.2	40
8	Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. Journal of Experimental Botany, 2020, 71, 6587-6600.	4.8	31
9	The Barley S-Adenosylmethionine Synthetase 3 Gene HvSAMS3 Positively Regulates the Tolerance to Combined Drought and Salinity Stress in Tibetan Wild Barley. Cells, 2020, 9, 1530.	4.1	20
10	Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. International Journal of Molecular Sciences, 2020, 21, 2795.	4.1	29
11	Resemblance and Difference of Seedling Metabolic and Transporter Gene Expression in High Tolerance Wheat and Barley Cultivars in Response to Salinity Stress. Plants, 2020, 9, 519.	3.5	18
12	Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiologia Plantarum, 2019, 165, 155-168.	5.2	46
13	Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). Plant Growth Regulation, 2019, 89, 109-118.	3.4	22
14	HvPAA1 Encodes a P-Type ATPase, a Novel Gene for Cadmium Accumulation and Tolerance in Barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2019, 20, 1732.	4.1	20
15	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. International Journal of Molecular Sciences, 2019, 20, 791.	4.1	15
16	Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum, 2019, 165, 134-143.	5.2	66
17	Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System. International Journal of Molecular Sciences, 2018, 19, 3553.	4.1	12
18	Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 2018, 162, 71-76.	6.0	57

Fangbin Cao

#	Article	IF	CITATIONS
19	Genotypic differences in cadmium transport in developing barley grains. Environmental Science and Pollution Research, 2017, 24, 7009-7015.	5.3	2
20	Alleviation of cadmium toxicity by potassium supplementation involves various physiological and biochemical features in Nicotiana tabacum L Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	17
21	Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation. Functional and Integrative Genomics, 2017, 17, 387-397.	3.5	9
22	Glutathione-induced alleviation of cadmium toxicity in Zea mays. Plant Physiology and Biochemistry, 2017, 119, 240-249.	5.8	34
23	Foliar application of betaine alleviates cadmium toxicity in maize seedlings. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	15
24	Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedlings. Environmental Science and Pollution Research, 2016, 23, 18229-18238.	5.3	54
25	Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Scientific Reports, 2016, 6, 32805.	3.3	37
26	Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243, 973-985.	3.2	22
27	<i>HvEXPB7</i> , a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. Journal of Experimental Botany, 2015, 66, 7405-7419.	4.8	94
28	Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. BioMetals, 2015, 28, 1063-1078.	4.1	29
29	Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regulation, 2015, 75, 715-723.	3.4	84
30	Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 2015, 111, 1-12.	4.2	129
31	N-acetyl-cysteine alleviates Cd toxicity and reduces Cd uptake in the two barley genotypes differing in Cd tolerance. Plant Growth Regulation, 2014, 74, 93-105.	3.4	18
32	Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Science of the Total Environment, 2014, 496, 275-281.	8.0	81
33	Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics, 2014, 15, 611.	2.8	101
34	Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry, 2014, 75, 36-44.	5.8	14
35	Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 2013, 63, 49-60.	5.8	219
36	Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 2013, 141, 2743-2750.	8.2	66

Fangbin Cao

#	Article	IF	CITATIONS
37	Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa). BioMetals, 2013, 26, 297-308.	4.1	50
38	Difference in Yield and Physiological Features in Response to Drought and Salinity Combined Stress during Anthesis in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e77869.	2.5	116
39	Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 2012, 235-236, 343-351.	12.4	259
40	Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. Journal of Hazardous Materials, 2011, 192, 1056-1066.	12.4	72
41	Modulation of Exogenous Glutathione in Phytochelatins and Photosynthetic Performance Against Cd Stress in the Two Rice Genotypes Differing in Cd Tolerance. Biological Trace Element Research, 2011, 143, 1159-1173.	3.5	76