
Terry L Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrieval-induced forgetting in children and adolescents with and without obesity. International Journal of Obesity, 2022, 46, 851-858.	3.4	4
2	Appetitive interoception, the hippocampus and western-style diet. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 845-859.	5.7	10
3	The Three-Chamber Choice Behavioral Task using Zebrafish as a Model System. Journal of Visualized Experiments, 2021, , .	0.3	3
4	Reframing appetitive reinforcement learning and reward valuation as effects mediated by hippocampal-dependent behavioral inhibition. Nutrition Research, 2020, 79, 1-12.	2.9	7
5	Hippocampal-dependent appetitive control is impaired by experimental exposure to a Western-style diet. Royal Society Open Science, 2020, 7, 191338.	2.4	48
6	Ad-libitum high fat diet consumption during adolescence and adulthood impacts the intravenous self-administration of cocaine in male Sprague-Dawley rats Experimental and Clinical Psychopharmacology, 2020, 28, 32-43.	1.8	8
7	Ad libitum high fat diet consumption during adolescence and adulthood fails to impact the affective properties of cocaine in male Sprague-Dawley rats Experimental and Clinical Psychopharmacology, 2020, 28, 438-448.	1.8	5
8	Hippocampal-Dependent Inhibitory Learning and Memory Processes in the Control of Eating and Drug Taking. Current Pharmaceutical Design, 2020, 26, 2334-2352.	1.9	15
9	Differential Effects of Dietary MSG on Hippocampal Dependent Memory Are Mediated by Diet. Frontiers in Neuroscience, 2019, 13, 968.	2.8	9
10	The Cognitive Control of Eating and Body Weight: It's More Than What You "Think― Frontiers in Psychology, 2019, 10, 62.	2.1	73
11	The effects of a GLP-1 analog liraglutide on reward value and the learned inhibition of appetitive behavior in male and female rats. International Journal of Obesity, 2019, 43, 1875-1879.	3.4	9
12	Considering sex differences in the cognitive controls of feeding. Physiology and Behavior, 2018, 187, 97-107.	2.1	17
13	Associative mechanisms underlying the function of satiety cues in the control of energy intake and appetitive behavior. Physiology and Behavior, 2018, 192, 37-49.	2.1	7
14	Special Issue of Physiology & Behavior: Sex Differences. Physiology and Behavior, 2018, 187, 1.	2.1	1
15	Deficits in episodic memory are related to uncontrolled eating in a sample of healthy adults Appetite, 2018, 124, 33-42.	3.7	75
16	Discriminative control by deprivation states and external cues in male and female rats. Physiology and Behavior, 2018, 184, 91-99.	2.1	4
17	Cocaine impairs serial-feature negative learning and blood-brain barrier integrity. Pharmacology Biochemistry and Behavior, 2018, 170, 56-63.	2.9	11
18	Western diets induce blood-brain barrier leakage and alter spatial strategies in rats Behavioral Neuroscience, 2016, 130, 123-135.	1.2	86

#	Article	IF	CITATIONS
19	Western diet and the weakening of the interoceptive stimulus control of appetitive behavior. Behavioural Brain Research, 2016, 312, 219-230.	2.2	23
20	The outward spiral: a vicious cycle model of obesity and cognitive dysfunction. Current Opinion in Behavioral Sciences, 2016, 9, 40-46.	3.9	65
21	Western-style diet impairs stimulus control by food deprivation state cues: Implications for obesogenic environments. Appetite, 2015, 93, 13-23.	3.7	34
22	NIH working group report: Innovative research to improve maintenance of weight loss. Obesity, 2015, 23, 7-15.	3.0	405
23	Western Diet and Cognitive Impairment. , 2015, , 295-305.		4
24	Brain and behavioral perturbations in rats following Western diet access. Appetite, 2015, 93, 35-43.	3.7	36
25	Taste, Sickness, and Learning. American Scientist, 2015, 103, 204.	0.1	6
26	A view of obesity as a learning and memory disorder Journal of Experimental Psychology Animal Learning and Cognition, 2014, 40, 261-279.	0.5	36
27	Human cognitive function and the obesogenic environment. Physiology and Behavior, 2014, 136, 185-193.	2.1	91
28	An application of Pavlovian principles to the problems of obesity and cognitive decline. Neurobiology of Learning and Memory, 2014, 108, 172-184.	1.9	76
29	Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. International Journal of Obesity, 2014, 38, 349-356.	3.4	41
30	Obesity: Cognitive Impairment and the Failure to â€~Eat Right'. Current Biology, 2014, 24, R685-R687.	3.9	13
31	Do impaired memory and body weight regulation originate in childhood with diet-induced hippocampal dysfunction?. American Journal of Clinical Nutrition, 2014, 99, 971-972.	4.7	1
32	Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience, 2013, 253, 110-122.	2.3	143
33	Adverse effects of high-intensity sweeteners on energy intake and weight control in male and obesity-prone female rats Behavioral Neuroscience, 2013, 127, 262-274.	1.2	62
34	Evaluation of the Association between Maternal Smoking, Childhood Obesity, and Metabolic Disorders: A National Toxicology Program Workshop Review. Environmental Health Perspectives, 2013, 121, 170-180.	6.0	139
35	Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1351-R1363.	1.8	5
36	The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood–brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiology and Behavior, 2012, 107, 26-33.	2.1	175

#	Article	IF	CITATIONS
37	Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behavioural Brain Research, 2012, 233, 1-14.	2.2	95
38	Saccharin preâ€exposure enhances appetitive flavor learning in preâ€weanling rats. Developmental Psychobiology, 2012, 54, 818-824.	1.6	10
39	A study of hippocampal structureâ€function relations along the septoâ€ŧemporal axis. Hippocampus, 2012, 22, 680-692.	1.9	28
40	Fat substitutes promote weight gain in rats consuming high-fat diets Behavioral Neuroscience, 2011, 125, 512-518.	1.2	23
41	Intake of High-Intensity Sweeteners Alters the Ability of Sweet Taste to Signal Caloric Consequences: Implications for the Learned Control of Energy and Body Weight Regulation. Quarterly Journal of Experimental Psychology, 2011, 64, 1430-1441.	1.1	87
42	Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiology and Behavior, 2011, 103, 59-68.	2.1	536
43	Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal "bitter taste―cue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1557-R1568.	1.8	16
44	Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet Journal of Experimental Psychology, 2010, 36, 313-319.	1.7	155
45	Hippocampal lesions impair retention of discriminative responding based on energy state cues Behavioral Neuroscience, 2010, 124, 97-105.	1.2	85
46	Learned and cognitive controls of food intake. Brain Research, 2010, 1350, 71-76.	2.2	63
47	Body weight gain in rats consuming sweetened liquids. Effects of caffeine and diet composition. Appetite, 2010, 55, 528-533.	3.7	35
48	High-intensity sweeteners and energy balance. Physiology and Behavior, 2010, 100, 55-62.	2.1	178
49	The Effects of a High-Energy Diet on Hippocampal Function and Blood-Brain Barrier Integrity in the Rat. Journal of Alzheimer's Disease, 2010, 21, 207-219.	2.6	257
50	Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus, 2009, 19, 235-252.	1.9	190
51	General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats Behavioral Neuroscience, 2009, 123, 772-780.	1.2	85
52	The melanocortin antagonist AgRP (83–132) increases appetitive responding for a fat, but not a carbohydrate, reinforcer. Pharmacology Biochemistry and Behavior, 2008, 89, 263-271.	2.9	44
53	A role for sweet taste: Calorie predictive relations in energy regulation by rats Behavioral Neuroscience, 2008, 122, 161-173.	1.2	247
54	Interoceptive "satiety―signals produced by leptin and CCK. Peptides, 2007, 28, 988-1002.	2.4	23

#	Article	IF	CITATIONS
55	The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behavioural Brain Research, 2007, 182, 57-66.	2.2	218
56	A potential role for the hippocampus in energy intake and body weight regulation. Current Opinion in Pharmacology, 2007, 7, 613-616.	3.5	143
57	Comparison of nutritive and nonnutritive stimuli in intestinal and oral conditioned taste aversion paradigms Behavioral Neuroscience, 2006, 120, 1268-1278.	1.2	8
58	Consistent relationships between sensory properties of savory snack foods and calories influence food intake in rats. International Journal of Obesity, 2006, 30, 1685-1692.	3.4	19
59	Food Viscosity Influences Caloric Intake Compensation and Body Weight in Rats. Obesity, 2005, 13, 537-544.	4.0	39
60	Obesity: Outwitting the wisdom of the body?. Current Neurology and Neuroscience Reports, 2005, 5, 159-162.	4.2	14
61	The interoceptive cue properties of ghrelin generalize to cues produced by food deprivation. Peptides, 2005, 26, 1602-1610.	2.4	51
62	Influence of early dietary experience on energy regulation in rats. Physiology and Behavior, 2005, 86, 669-680.	2.1	10
63	Memory inhibition and energy regulation. Physiology and Behavior, 2005, 86, 731-746.	2.1	159
64	A Pavlovian approach to the problem of obesity. International Journal of Obesity, 2004, 28, 933-935.	3.4	126
65	Functional differentiation within the medial temporal lobe in the rat. Hippocampus, 2004, 14, 434-449.	1.9	52
66	The hippocampus and inhibitory learning: a â€~Gray' area?. Neuroscience and Biobehavioral Reviews, 2004, 28, 261-271.	6.1	91
67	Reconsideration of the role of the hippocampus in learned inhibition. Behavioural Brain Research, 2001, 119, 111-130.	2.2	88
68	The hippocampus and motivation revisited: appetite and activity. Behavioural Brain Research, 2001, 127, 13-23.	2.2	130
69	The role of the hypothalamic melanocortin system in behavioral appetitive processes. Pharmacology Biochemistry and Behavior, 2001, 69, 603-609.	2.9	13
70	The learned function of food-deprivation cues: A role for conditioned modulation. Learning and Behavior, 1996, 24, 46-56.	3.4	11
71	Discriminative cues produced by NPY do not generalize to the interoceptive cues produced by food deprivation. Physiology and Behavior, 1995, 58, 1237-1241.	2.1	17
72	A role for hippocampus in the utilization of hunger signals. Behavioral and Neural Biology, 1993, 59, 167-171.	2.2	179

#	Article	IF	CITATIONS
73	Cholecystokinin, but not bombesin, has interoceptive sensory consequences like 1-h food deprivation. Physiology and Behavior, 1993, 53, 737-745.	2.1	13
74	The nature and function of interoceptive signals to feed: Toward integration of physiological and learning perspectives Psychological Review, 1993, 100, 640-657.	3.8	95
75	Development of tolerance to endogenous opiates activated by 24-h food deprivation. Appetite, 1992, 19, 1-13.	3.7	19
76	Support for configural association theory: Now you see it, now you don't. Hippocampus, 1992, 2, 90-91.	1.9	21
77	On the hippocampus and learned conditional responding: Effects of aspiration versus ibotenate lesions. Hippocampus, 1991, 1, 107-117.	1.9	108
78	Discontinuation of diazepam and sensitivity to a shock signal: Fear conditioning prior to drug treatment. Pharmacology Biochemistry and Behavior, 1990, 36, 691-694.	2.9	1
79	The long-term effects of diazepam, lorazepam, and buspirone on behavioral suppression by a shock signal. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1990, 14, 223-236.	4.8	3
80	Conditioned reversal of reactions to normally avoided tastes. Physiology and Behavior, 1990, 47, 535-538.	2.1	49
81	An animal model to detect the neuropsychological toxicity of anticancer agents. Medical and Pediatric Oncology, 1989, 17, 216-221.	1.0	26
82	Transfer between Pavlovian facilitators and instrumental discriminative stimuli. Learning and Behavior, 1988, 16, 285-291.	3.4	34
83	Learning about deprivation intensity stimuli Behavioral Neuroscience, 1987, 101, 198-208.	1.2	71
84	Long-term effects of yohimbine on behavioral sensitivity to a stressor. Psychopharmacology, 1987, 92, 35-41.	3.1	14
85	The long-term effects of diazepam and pentylenetetrazol on behavioral sensitivity to a stressor. Pharmacology Biochemistry and Behavior, 1987, 27, 99-103.	2.9	4
86	Transfer of facilitation in the rat. Learning and Behavior, 1986, 14, 380-386.	3.4	47
87	Irrelevant incentive learning revisited: Associating flavors and exteroceptive cues with positive incentives. Learning and Motivation, 1985, 16, 288-300.	1.2	Ο
88	Shock preexposure and the reduced effectiveness of shock. Learning and Motivation, 1985, 16, 357-380.	1.2	3
89	A comparison of the effects of reward magnitude and deprivation level on resistance to extinction. Bulletin of the Psychonomic Society, 1982, 19, 119-122.	0.2	2
90	Resistance to satiation: Reinforcing effects of food and eating under satiation. Learning and Motivation, 1981, 12, 171-195.	1.2	12

#	Article	IF	CITATIONS
91	A comparison of resistance to satiation and resistance to extinction. Learning and Behavior, 1981, 9, 108-114.	3.4	2
92	Deprivation stimulus intensity and incentive factors in the control of instrumental responding Journal of Experimental Psychology, 1981, 7, 140-149.	1.7	11
93	Memory, serial anticipation pattern learning, and transfer in rats. Learning and Behavior, 1980, 8, 575-585.	3.4	88
94	Effects of reward magnitude on running speed following a deprivation upshift. Bulletin of the Psychonomic Society, 1980, 15, 150-152.	0.2	2
95	Learning about water by hungry rats. Learning and Motivation, 1979, 10, 58-72.	1.2	3