
Jan A Delcour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat-induced denaturation and aggregation of protein in quinoa (Chenopodium quinoa Willd.) seeds and whole meal. Food Chemistry, 2022, 372, 131330.	4.2	7
2	Colloidal stability of oil-in-water emulsions prepared from hen egg white submitted to dry and/or wet heating to induce amyloid-like fibril formation. Food Hydrocolloids, 2022, 125, 107450.	5.6	8
3	Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification. LWT - Food Science and Technology, 2022, 157, 113077.	2.5	4
4	Microbial transglutaminase induced modification of wheat gliadin based nanoparticles and its impact on their air-water interfacial properties. Food Hydrocolloids, 2022, 127, 107471.	5.6	9
5	Bioavailability and Health Impact of Ingested Amyloidâ€like Protein Fibrils and their Link with Inflammatory Status: A Need for More Research?. Molecular Nutrition and Food Research, 2022, , 2101032.	1.5	2
6	Impact of heat and enzymatic treatment on ovalbumin amyloid-like fibril formation and enzyme-induced gelation. Food Hydrocolloids, 2022, 131, 107784.	5.6	10
7	The impact of cyclodextrins on the in vitro digestion of native and gelatinised starch and starch present in a sugar-snap cookie. LWT - Food Science and Technology, 2022, 165, 113748.	2.5	3
8	Reassessment of the generic features of starch gelatinization: An advanced SAXS study on maize and potato starch. Food Hydrocolloids, 2022, 133, 107941.	5.6	2
9	Impact of Mineral Ions and Their Concentrations on Pasting and Celation of Potato, Rice, and Maize Starches and Blends Thereof. Starch/Staerke, 2021, 73, 2000110.	1.1	1
10	Drying mode and hydrothermal treatment conditions govern the formation of amyloid-like protein fibrils in solutions of dried hen egg white. Food Hydrocolloids, 2021, 112, 106276.	5.6	15
11	Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions. Food Hydrocolloids, 2021, 111, 106327.	5.6	20
12	Free wheat flour lipids decrease air-liquid interface stability in sponge cake batter. Food Research International, 2021, 140, 110007.	2.9	4
13	Heating Wheat Gluten Promotes the Formation of Amyloid-like Fibrils. ACS Omega, 2021, 6, 1823-1833.	1.6	18
14	Hydrothermal Treatments Cause Wheat Gluten-Derived Peptides to Form Amyloid-like Fibrils. Journal of Agricultural and Food Chemistry, 2021, 69, 1963-1974.	2.4	16
15	Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods, 2021, 10, 428.	1.9	8
16	Use of Amylomaltase to Steer the Functional and Nutritional Properties of Wheat Starch. Foods, 2021, 10, 303.	1.9	8
17	Premilling pearling for producing wheat fractions with distinct digestibility and fermentability. Cereal Chemistry, 2021, 98, 759-773.	1.1	2
18	¹ H Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopic Analysis of Water-Extractable Arabinoxylan in Wheat (<i>Triticum aestivum</i> L.) Flour. Journal of Agricultural and Food Chemistry, 2021, 69, 3912-3922.	2.4	5

#	Article	IF	CITATIONS
19	Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. LWT - Food Science and Technology, 2021, 143, 111079.	2.5	12
20	Gas cell stabilization by aqueousâ€phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3881-3917.	5.9	17
21	How Yeast Impacts the Effect of Ascorbic Acid on Wheat Flour Dough Extensional Rheology. Food Biophysics, 2021, 16, 406-414.	1.4	1
22	Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Willd.) protein. Food Hydrocolloids, 2021, 115, 106611.	5.6	15
23	Detection of ovalbumin amyloid-like fibrils at the oil-water interface in oil-in-water emulsions by spinning disk confocal microscopy. Food Structure, 2021, 29, 100207.	2.3	1
24	Thin film drainage dynamics of wheat and rye dough liquors and oat batter liquor. Food Hydrocolloids, 2021, 116, 106624.	5.6	6
25	The role and impact on quality of exogenous and endogenous lipids during sponge cake making. Trends in Food Science and Technology, 2021, 114, 158-166.	7.8	7
26	The impact of incorporating coarse wheat farina containing intact endosperm cells in a bread recipe on bread characteristics and starch digestibility. Journal of Cereal Science, 2021, 102, 103333.	1.8	6
27	The role of arabinoxylan in determining the non-linear and linear rheology of bread doughs made from blends of wheat (Triticum aestivum L.) and rye (Secale cereale L.) flour. Food Hydrocolloids, 2021, 120, 106990.	5.6	12
28	Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chemistry, 2021, 362, 130203.	4.2	20
29	An Ohmic heating study of the functionality of leavening acids in cream cake systems. LWT - Food Science and Technology, 2021, 152, 112277.	2.5	4
30	The Role of Intact and Disintegrated Egg Yolk Low-Density Lipoproteins during Sponge Cake Making and Their Impact on Starch and Protein Mediated Structure Setting. Foods, 2021, 10, 107.	1.9	5
31	Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5965-5991.	5.9	22
32	Reduced-Immunogenicity Wheat Now Coming to Age. , 2021, , 15-42.		0
33	The impact of fermentation on the distribution of cadmium in cacao beans. Food Research International, 2020, 127, 108743.	2.9	23
34	Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. International Journal of Food Science and Technology, 2020, 55, 891-898.	1.3	15
35	Characterization of white flour produced from roasted wheats differing in hardness and protein content. Cereal Chemistry, 2020, 97, 339-348.	1.1	7
36	Understanding the air-water interfacial behavior of suspensions of wheat gliadin nanoparticles. Food Hydrocolloids, 2020, 102, 105638.	5.6	22

2

#	Article	IF	CITATIONS
37	Linear and Non-linear Rheology of Bread Doughs Made from Blends of Wheat (Triticum aestivum L.) and Rye (Secale cereale L.) Flour. Food and Bioprocess Technology, 2020, 13, 159-171.	2.6	13
38	Stabilization of the air-liquid interface in sponge cake batter by surface-active proteins and lipids: A foaming protocol based approach. Food Hydrocolloids, 2020, 101, 105548.	5.6	18
39	Food protein network formation and gelation induced by conductive or microwave heating: A focus on hen egg white. Innovative Food Science and Emerging Technologies, 2020, 66, 102484.	2.7	23
40	¹³ C-DOSY-TOSY NMR Correlation for In Situ Analysis of Structure, Size Distribution, and Dynamics of Prebiotic Oligosaccharides. Journal of Agricultural and Food Chemistry, 2020, 68, 3250-3259.	2.4	2
41	The role of exogenous lipids in starch and protein mediated sponge cake structure setting during baking. Food Research International, 2020, 137, 109551.	2.9	4
42	Transformations and functional role of starch during potato crisp making: A review. Journal of Food Science, 2020, 85, 4118-4129.	1.5	12
43	Amylose molecular fine structure dictates water–oil dynamics during deep-frying and the caloric density of potato crisps. Nature Food, 2020, 1, 736-745.	6.2	17
44	What makes starch from potato (<i>Solanum tuberosum</i> L) tubers unique: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2588-2612.	5.9	44
45	Impact of wheat endogenous lipids on the quality of fresh bread: Key terms, concepts, and underlying mechanisms. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3715-3754.	5.9	20
46	Heatâ€ s ensitive inhibition of aqualysin 1 by protein containing wheat, maize, and barley extracts. Cereal Chemistry, 2020, 97, 1204-1215.	1.1	0
47	The major constituents of rye (<i>Secale cereale</i> L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chemistry, 2020, 97, 739-754.	1.1	25
48	Amylose and amylopectin functionality during storage of bread prepared from flour of wheat containing unique starches. Food Chemistry, 2020, 320, 126609.	4.2	16
49	Processing Induced Changes in Food Proteins: Amyloid Formation during Boiling of Hen Egg White. Biomacromolecules, 2020, 21, 2218-2228.	2.6	34
50	Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium) Tj ETQq0 0 0 rgB1	[Overloc 2.5	k 10 Tf 50 2
51	The role of lipids in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Chemistry, 2020, 319, 126565.	4.2	17
52	The role of non-starch polysaccharides in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Hydrocolloids, 2020, 105, 105771.	5.6	27
53	Amylolysis as a tool to control amylose chain length and to tailor gel formation during potato-based crisp making. Food Hydrocolloids, 2020, 103, 105658.	5.6	10
	Impact of Carool Soud Sprouting on Ito Nutritional and Technological Properties, A Critical Deview		

54Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review.
Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 305-328.5.9155

#	Article	IF	CITATIONS
55	Wheat (Triticum aestivum L.) flour free lipid fractions negatively impact the quality of sponge cake. Food Chemistry, 2019, 271, 401-409.	4.2	17
56	Wheat Gluten Amino Acid Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Methods in Molecular Biology, 2019, 2030, 381-394.	0.4	3
57	Differences in endosperm cell wall integrity in wheat (<i>Triticum aestivum</i> L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic <i>in vitro</i> digestibility. Food and Function, 2019, 10, 4674-4684.	2.1	27
58	Do puroindolines affect the impact of enzymatic lipid hydrolysis on loaf volume in bread making?. Food Chemistry, 2019, 301, 125273.	4.2	2
59	Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1751-1769.	5.9	41
60	Ingredient Functionality During Foamâ€Type Cake Making: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1550-1562.	5.9	47
61	The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. Journal of Food Composition and Analysis, 2019, 83, 103277.	1.9	42
62	Steeping and germination of wheat (Triticum aestivum L.). I. Unlocking the impact of phytate and cell wall hydrolysis on bio-accessibility of iron and zinc elements. Journal of Cereal Science, 2019, 90, 102847.	1.8	12
63	Impact of aqualysin 1 peptidase from Thermus aquaticus on molecular scale changes in the wheat gluten network during bread baking. Food Chemistry, 2019, 295, 599-606.	4.2	7
64	Conditions Governing Food Protein Amyloid Fibril Formation—Part I: Egg and Cereal Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1256-1276.	5.9	43
65	Lipases in wheat flour bread making: Importance of an appropriate balance between wheat endogenous lipids and their enzymatically released hydrolysis products. Food Chemistry, 2019, 298, 125002.	4.2	25
66	Conditions Governing Food Protein Amyloid Fibril Formation. Part II: Milk and Legume Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1277-1291.	5.9	57
67	The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 2019, 25, 98-103.	4.1	50
68	Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry, 2019, 295, 110-119.	4.2	19
69	Impact of egg white and soy proteins on structure formation and crumb firming in gluten-free breads. Food Hydrocolloids, 2019, 95, 406-417.	5.6	42
70	Impact of mineral ions on the release of starch and gel forming capacity of potato flakes in relation to water dynamics and oil uptake during the production of snacks made thereof. Food Research International, 2019, 122, 419-431.	2.9	17
71	Ohmic versus conventional heating for studying molecular changes during pound cake baking. Journal of Cereal Science, 2019, 89, 102708.	1.8	17
72	How to impact gluten protein network formation during wheat flour dough making. Current Opinion in Food Science, 2019, 25, 88-97.	4.1	86

#	Article	IF	CITATIONS
73	Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems. Current Opinion in Food Science, 2019, 25, 19-27.	4.1	29
74	Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. Journal of Cereal Science, 2019, 90, 102843.	1.8	4
75	The Impact of Hydro-Priming and Osmo-Priming on Seedling Characteristics, Plant Hormone Concentrations, Activity of Selected Hydrolytic Enzymes, and Cell Wall and Phytate Hydrolysis in Sprouted Wheat (<i>Triticum aestivum</i> L.). ACS Omega, 2019, 4, 22089-22100.	1.6	36
76	Impact of chlorine treatment on properties of wheat flour and its components in the presence of sucrose. Food Chemistry, 2019, 274, 434-443.	4.2	9
77	Electrical resistance oven baking as a tool to study crumb structure formation in gluten-free bread. Food Research International, 2019, 116, 925-931.	2.9	20
78	Rational Design of Amyloid‣ike Fibrillary Structures for Tailoring Food Protein Technoâ€Functionality and Their Potential Health Implications. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 84-105.	5.9	101
79	Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR. Food Research International, 2019, 119, 675-682.	2.9	20
80	Relating the structural, air-water interfacial and foaming properties of wheat (Triticum aestivum L.) gliadin and maize (Zea mays L.) zein based nanoparticle suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 249-259.	2.3	39
81	Impact of physical and enzymatic cell wall opening on the release of pre-gelatinized starch and viscosity forming potential of potato flakes. Carbohydrate Polymers, 2018, 194, 401-410.	5.1	15
82	Study of the role of bran water binding and the steric hindrance by bran in straight dough bread making. Food Chemistry, 2018, 253, 262-268.	4.2	40
83	The effect of arabinoxylooligosaccharides on upper gastroduodenal motility and hunger ratings in humans. Neurogastroenterology and Motility, 2018, 30, e13306.	1.6	2
84	Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocolloids, 2018, 79, 352-370.	5.6	57
85	Thermo-reversible inhibition makes aqualysin 1 from Thermus aquaticus a potent tool for studying the contribution of the wheat gluten network to the crumb texture of fresh bread. Food Chemistry, 2018, 264, 118-125.	4.2	14
86	The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 2018, 264, 367-376.	4.2	49
87	Effect of adding a reactive plasticizer on the mechanical, thermal, and morphology properties of nylon toughened wheat gluten materials. Journal of Applied Polymer Science, 2018, 135, 45931.	1.3	7
88	Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocolloids, 2018, 77, 176-186.	5.6	34
89	The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb. Food Chemistry, 2018, 242, 68-74.	4.2	37
90	Partial purification of components in rye water extractables which improve the quality of oat bread. Journal of Cereal Science, 2018, 79, 141-147.	1.8	1

#	Article	IF	CITATIONS
91	Impact of water-extractable components from different cereals on the quality of oat bread. Journal of Cereal Science, 2018, 79, 134-140.	1.8	8
92	Intact and Damaged Wheat Starch and Amylase Functionality During Multilayered Fermented Pastry Making. Journal of Food Science, 2018, 83, 2489-2499.	1.5	7
93	Wheat (Triticum aestivum L.) lipid species distribution in the different stages of straight dough bread making. Food Research International, 2018, 112, 299-311.	2.9	27
94	Relating the composition and air/water interfacial properties of wheat, rye, barley, and oat dough liquor. Food Chemistry, 2018, 264, 126-134.	4.2	26
95	Enzymatically Hydrolyzed Wheat Gluten as a Foaming Agent in Food: Incorporation in a Meringue Recipe as a Proofâ€ofâ€Concept. Journal of Food Science, 2018, 83, 2119-2126.	1.5	26
96	TD NMR Relaxation Studies of Cereal Products. , 2018, , 1431-1448.		0
97	Methodologies for producing amylose: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 407-417.	5.4	15
98	Study of biopolymer mobility and water dynamics in wheat bran using time-domain 1H NMR relaxometry. Food Chemistry, 2017, 236, 68-75.	4.2	23
99	Study on the effects of wheat bran incorporation on water mobility and biopolymer behavior during bread making and storage using time-domain 1 H NMR relaxometry. Food Chemistry, 2017, 236, 76-86.	4.2	47
100	Concepts and experimental protocols towards a molecular level understanding of the mechanical properties of glassy, cross-linked proteins: Application to wheat gluten bioplastics. European Polymer Journal, 2017, 88, 231-245.	2.6	5
101	Exploring the Relationship between Structural and Air–Water Interfacial Properties of Wheat (<i>Triticum aestivum</i> L.) Gluten Hydrolysates in a Food System Relevant pH Range. Journal of Agricultural and Food Chemistry, 2017, 65, 1263-1271.	2.4	13
102	Development of an infusion method for encapsulating ascorbyl palmitate in V-type granular cold-water swelling starch. Carbohydrate Polymers, 2017, 165, 229-237.	5.1	30
103	Lipases as Processing Aids in the Separation of Wheat Flour into Gluten and Starch: Impact on the Lipid Population, Gluten Agglomeration, and Yield. Journal of Agricultural and Food Chemistry, 2017, 65, 1932-1940.	2.4	17
104	Encapsulation of the antioxidant ascorbyl palmitate in V-type granular cold-water swelling starch affects the properties of both. Carbohydrate Polymers, 2017, 165, 402-409.	5.1	16
105	The impact of redox agents on further dough development, relaxation and elastic recoil during lamination and fermentation of multi-layered pastry dough. Journal of Cereal Science, 2017, 75, 84-91.	1.8	10
106	The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles. Journal of Cereal Science, 2017, 75, 234-242.	1.8	21
107	The Role of Wheat and Egg Constituents in the Formation of a Covalent and Nonâ€covalent Protein Network in Fresh and Cooked Egg Noodles. Journal of Food Science, 2017, 82, 24-35.	1.5	26
108	¹⁵ N‣abeling of Egg Proteins for Studying Protein Network Formation During Pound Cake Making. Cereal Chemistry, 2017, 94, 485-490.	1.1	8

#	Article	IF	CITATIONS
109	Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates. Colloids and Surfaces B: Biointerfaces, 2017, 151, 295-303.	2.5	27
110	Extractability and chromatographic separation of rye (Secale cereale L.) flour proteins. Journal of Cereal Science, 2017, 73, 68-75.	1.8	14
111	The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread. Journal of Agricultural and Food Chemistry, 2017, 65, 10074-10083.	2.4	13
112	Pearling Affects the Lipid Content and Composition and Lipase Activity Levels of Wheat (Triticum) Tj ETQq0 0 0 r	gBT /Over 1.1	lock 10 Tf 50 12
113	Impact of lipases with different substrate specificity in wheat flour separation on the properties of the resultant gluten. Journal of Cereal Science, 2017, 77, 291-296.	1.8	7
114	Ultrasonic Characterization of Amyloid-Like Ovalbumin Aggregation. ACS Omega, 2017, 2, 4612-4620.	1.6	9
115	Air-water interfacial properties of enzymatically hydrolyzed wheat gluten in the presence of sucrose. Food Hydrocolloids, 2017, 73, 284-294.	5.6	18
116	Reaction pattern differences impact physical properties of starches derivatized to the same extent in a model cross-linking system. Carbohydrate Polymers, 2017, 174, 772-779.	5.1	1
117	Impact of ethanol on the air-water interfacial properties of enzymatically hydrolyzed wheat gluten. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 659-667.	2.3	12
118	Proteins of Amaranth (<i>Amaranthus</i> spp.), Buckwheat (<i>Fagopyrum</i> spp.), and Quinoa (<i>Chenopodium</i> spp.): A Food Science and Technology Perspective. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 39-58.	5.9	119
119	Systemic availability and metabolism of colonicâ€derived shortâ€chain fatty acids in healthy subjects: a stable isotope study. Journal of Physiology, 2017, 595, 541-555.	1.3	254
120	Protein network formation during pound cake baking: The role of egg yolk and its fractions. Food Hydrocolloids, 2017, 63, 226-232.	5.6	19
121	A response surface analysis of the aqueous leaching of amylose from maize starch. Food Hydrocolloids, 2017, 63, 265-272.	5.6	12
122	Prediction of heat-induced polymerization of different globular food proteins in mixtures with wheat gluten. Food Chemistry, 2017, 221, 1158-1167.	4.2	51
123	The Influence of Prebiotic Arabinoxylan Oligosaccharides on Microbiota Derived Uremic Retention Solutes in Patients with Chronic Kidney Disease: A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0153893.	1.1	74
124	The effect of arabinoxylooligosaccharides on gastric sensoryâ€motor function and nutrient tolerance in man. Neurogastroenterology and Motility, 2016, 28, 1194-1203.	1.6	5
125	Element distribution and iron speciation in mature wheat grains (<i>Triticum aestivum</i> L.) using synchrotron Xâ€ray fluorescence microscopy mapping and Xâ€ray absorption nearâ€edge structure (XANES) imaging. Plant, Cell and Environment, 2016, 39, 1835-1847.	2.8	72
126	TD NMR Relaxation Studies of Cereal Products. , 2016, , 1-18.		2

#	Article	IF	CITATIONS
127	The extent of maize starch crystal melting as a critical factor in the isolation of amylose via aqueous leaching. Food Hydrocolloids, 2016, 61, 36-47.	5.6	21
128	Protein network formation during pound cake making: The role of egg white proteins and wheat flour gliadins. Food Hydrocolloids, 2016, 61, 409-414.	5.6	36
129	Impact of Wheat Bran Hydration Properties As Affected by Toasting and Degree of Milling on Optimal Dough Development in Bread Making. Journal of Agricultural and Food Chemistry, 2016, 64, 3636-3644.	2.4	37
130	Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids, 2016, 48, 959-971.	1.2	25
131	Comparison of maize and wheat starch chain reactivity in relation to uniform versus surface oriented starch granule derivatization patterns. Food Hydrocolloids, 2016, 61, 858-867.	5.6	4
132	Amyloid-like aggregation of ovalbumin: Effect of disulfide reduction and other egg white proteins. Food Hydrocolloids, 2016, 61, 914-922.	5.6	20
133	Study of the intrinsic properties of wheat bran and pearlings obtained by sequential debranning and their role in bran-enriched bread making. Journal of Cereal Science, 2016, 71, 78-85.	1.8	26
134	Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 786-800.	5.9	214
135	Wheat (<i>Triticum aestivum L</i> .) Bran in Bread Making: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 28-42.	5.9	190
136	Modification of the Secondary Binding Site of Xylanases Illustrates the Impact of Substrate Selectivity on Bread Making. Journal of Agricultural and Food Chemistry, 2016, 64, 5400-5409.	2.4	13
137	V-type crystal formation in starch by aqueous ethanol treatment: TheÂeffect of amylose degree of polymerization. Food Hydrocolloids, 2016, 61, 649-661.	5.6	56
138	Prebiotics, Fermentable Dietary Fiber, and Health Claims. Advances in Nutrition, 2016, 7, 1-4.	2.9	57
139	Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids, 2016, 57, 122-131.	5.6	45
140	Dry heat treatment affects wheat bran surface properties and hydration kinetics. Food Chemistry, 2016, 203, 513-520.	4.2	24
141	Water electrolyte promoted oxidation of functional thiol groups. Food Chemistry, 2016, 197, 1235-1239.	4.2	2
142	The effect of cross-linking additives on the structure and properties of glassy wheat gluten material. Industrial Crops and Products, 2016, 81, 38-48.	2.5	12
143	Redox agents and N -ethylmaleimide affect protein polymerization during laboratory scale dry pasta production and cooking. Food Chemistry, 2016, 196, 646-653.	4.2	17
144	A Critical Look at Prebiotics Within the Dietary Fiber Concept. Annual Review of Food Science and Technology, 2016, 7, 167-190.	5.1	149

#	Article	IF	CITATIONS
145	Molecular Oxygen and Reactive Oxygen Species in Bread-making Processes: Scarce, but Nevertheless Important. Critical Reviews in Food Science and Nutrition, 2016, 56, 722-736.	5.4	24
146	Air–water interfacial properties of enzymatic wheat gluten hydrolyzates determine their foaming behavior. Food Hydrocolloids, 2016, 55, 155-162.	5.6	40
147	Ingredient Functionality in Multilayered Dough-margarine Systems and the Resultant Pastry Products: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 2101-2114.	5.4	18
148	Current and forward looking experimental approaches in gluten-free bread making research. Journal of Cereal Science, 2016, 67, 92-111.	1.8	113
149	Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on overnight glucose tolerance and markers of gut fermentation in healthy young adults. European Journal of Nutrition, 2016, 55, 1661-1670.	1.8	63
150	Emulsifying and Foaming Properties of Okara Protein Hydrolysates. Cereal Chemistry, 2016, 93, 71-76.	1.1	7
151	Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 2016, 52, 69-77.	5.6	52
152	Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study. Food Chemistry, 2016, 192, 586-595.	4.2	30
153	Impact of casein and egg white proteins on the structure of wheat glutenâ€based proteinâ€rich food. Journal of the Science of Food and Agriculture, 2016, 96, 757-763.	1.7	17
154	Extractability and Chromatographic Characterization of Wheat (<i>Triticum aestivum</i> L.) Bran Protein. Journal of Food Science, 2015, 80, C967-74.	1.5	25
155	Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients, 2015, 7, 8916-8929.	1.7	127
156	Wheat starch swelling, gelatinization and pasting: Effects of enzymatic modification of wheat endogenous lipids. LWT - Food Science and Technology, 2015, 63, 361-366.	2.5	44
157	Controlling wheat gluten cross-linking for high temperature processing. Industrial Crops and Products, 2015, 72, 119-124.	2.5	24
158	Wheat milling by-products and their impact on bread making. Food Chemistry, 2015, 187, 280-289.	4.2	57
159	LC-MS analysis reveals the presence of graminan- and neo-type fructans in wheat grains. Journal of Cereal Science, 2015, 61, 133-138.	1.8	34
160	Cereal grain fructans: Structure, variability and potential health effects. Trends in Food Science and Technology, 2015, 43, 32-42.	7.8	95
161	Study of hydration properties of wheat bran as a function of particle size. Food Chemistry, 2015, 179, 296-304.	4.2	118
162	Structure, chemical composition and enzymatic activities of pearlings and bran obtained from pearled wheat (Triticum aestivum L.) by roller milling. Journal of Cereal Science, 2015, 62, 66-72.	1.8	37

#	Article	IF	CITATIONS
163	Distribution of Minerals in Wheat Grains (<i>Triticum aestivum</i> L.) and in Roller Milling Fractions Affected by Pearling. Journal of Agricultural and Food Chemistry, 2015, 63, 1276-1285.	2.4	56
164	The Rheo Extrusion Meter, a New Device for Measuring Wheat Flour Baking Absorption and Dough Consistency: Principle and Applications. Cereal Chemistry, 2015, 92, 154-160.	1.1	0
165	Changes in wheat (Triticum aestivum L.) flour pasting characteristics as a result of storage and their underlying mechanisms. Journal of Cereal Science, 2015, 65, 81-87.	1.8	18
166	Wheat gluten/LDPE based thermoplastic vulcanizates containing LDPE-g-MA as compatibilizer. Industrial Crops and Products, 2015, 74, 824-838.	2.5	6
167	Removal of disulfide cross-links from wheat gluten and the effect thereof on the mechanical properties of rigid gluten bioplastic. European Polymer Journal, 2015, 68, 573-584.	2.6	16
168	Preparation of cross-linked maize (Zea mays L.) starch in different reaction media. Carbohydrate Polymers, 2015, 124, 302-310.	5.1	16
169	Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. British Journal of Nutrition, 2015, 113, 225-238.	1.2	37
170	The impact of pearling as a treatment prior to wheat roller milling on the texture and structure of bran-rich breakfast flakes. LWT - Food Science and Technology, 2015, 62, 668-674.	2.5	17
171	Direct evidence for the non-additive gelatinization in binary starch blends: A case study on potato starch mixed with rice or maize starches. Food Hydrocolloids, 2015, 50, 137-144.	5.6	19
172	Storage induced conversion of ovalbumin into S-ovalbumin in eggs impacts the properties of pound cake and its batter. Food Hydrocolloids, 2015, 49, 208-215.	5.6	30
173	Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Scientific Reports, 2015, 5, 12210.	1.6	66
174	Effect of aqueous and alcoholic shear treatments on the properties of rigid plastics from wheat gluten. Industrial Crops and Products, 2015, 77, 146-155.	2.5	5
175	A lipase based approach to understand the role of wheat endogenous lipids in bread crumb firmness evolution during storage. LWT - Food Science and Technology, 2015, 64, 874-880.	2.5	17
176	Purification of wheat grain fructans from wheat bran. Journal of Cereal Science, 2015, 65, 57-59.	1.8	20
177	Impact of extraction and elution media on non-size effects in size exclusion chromatography of proteins. Journal of Chromatography A, 2015, 1415, 100-107.	1.8	18
178	Bioâ€Based Nitriles from the Heterogeneously Catalyzed Oxidative Decarboxylation of Amino Acids. ChemSusChem, 2015, 8, 345-352.	3.6	32
179	Starch blends and their physicochemical properties. Starch/Staerke, 2015, 67, 1-13.	1.1	88
180	Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke, 2015, 67, 14-29.	1.1	245

#	Article	IF	CITATIONS
181	The role of gluten proteins in production and quality of a yeast leavened sugar and fat rich wheat based food model system – 2. Impact of redox agents. Food Research International, 2015, 67, 169-174.	2.9	5
182	Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: A focus on gas cell stabilization mechanisms. Food Chemistry, 2015, 172, 613-621.	4.2	32
183	Soaking Conditions During Brown Rice Parboiling Impact the Level of Breakageâ€&usceptible Rice Kernels. Cereal Chemistry, 2014, 91, 554-559.	1.1	15
184	A Curative Method for Primary Gushing of Beer and Carbonated Beverages: Characterization and Application of Antifoam Based on Hop Oils. Journal of the American Society of Brewing Chemists, 2014, , .	0.8	6
185	Effect of Wheat Grain Steaming and Washing on Lipase Activity in Whole Grain Flour. Cereal Chemistry, 2014, 91, 321-326.	1.1	28
186	Lipases and Their Functionality in the Production of Wheatâ€Based Food Systems. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 978-989.	5.9	78
187	Importance of crosslinking and disulfide bridge reduction for the mechanical properties of rigid wheat gluten bioplastics compression molded with thiol and/or disulfide functionalized additives. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
188	A lipase based approach for studying the role of wheat lipids in bread making. Food Chemistry, 2014, 156, 190-196.	4.2	60
189	The primary structure of wheat glutenin subunit 1Dx2 revealed by electrospray ionization mass spectrometry. Journal of Cereal Science, 2014, 60, 131-137.	1.8	6
190	Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chemistry, 2014, 151, 421-428.	4.2	76
191	Fermentation affects the composition and foaming properties of the aqueous phase of dough from soft wheat flour. Food Hydrocolloids, 2014, 37, 221-228.	5.6	16
192	Physical and Molecular Changes during the Storage of Gluten-Free Rice and Oat Bread. Journal of Agricultural and Food Chemistry, 2014, 62, 5682-5689.	2.4	61
193	Liquid chromatography/mass spectrometry analysis of branched fructans produced <i>in vitro</i> with ¹³ C″abeled substrates. Rapid Communications in Mass Spectrometry, 2014, 28, 2191-2200.	0.7	8
194	Impact of Wheat Bran Derived Arabinoxylanoligosaccharides and Associated Ferulic Acid on Dough and Bread Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 7190-7199.	2.4	18
195	The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. Journal of Cereal Science, 2014, 60, 507-513.	1.8	114
196	Structural and thermal transitions during the conversion from native to granular cold-water swelling maize starch. Carbohydrate Polymers, 2014, 114, 196-205.	5.1	59
197	Moisture Distribution during Conventional or Electrical Resistance Oven Baking of Bread Dough and Subsequent Storage. Journal of Agricultural and Food Chemistry, 2014, 62, 6445-6453.	2.4	30
198	Impact of pyranose oxidase from Trametes multicolor, glucose oxidase from Aspergillus niger and hydrogen peroxide on protein agglomeration in wheat flour gluten–starch separation. Food Chemistry, 2014, 148, 235-239.	4.2	9

#	Article	IF	CITATIONS
199	Ethanol at Levels Produced by <i>Saccharomyces cerevisiae</i> during Wheat Dough Fermentation Has a Strong Impact on Dough Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 9326-9335.	2.4	38
200	Wheat (Triticum aestivum L.) puroindoline functionality in bread making and its impact on bread quality. Journal of Cereal Science, 2014, 60, 114-121.	1.8	9
201	The role of gluten proteins in production and quality of a yeast leavened sugar and fat rich wheat based food model system. Food Research International, 2014, 62, 991-997.	2.9	10
202	Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 2014, 41, 298-308.	5.6	67
203	The Structure and Thermal Stability of Amylose–Lipid Complexes: A Case Study on Amylose–Glycerol Monostearate. Crystal Growth and Design, 2014, 14, 3221-3233.	1.4	51
204	Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 2014, 10, 1-12.	1.6	73
205	Storage of parbaked bread affects shelf life of fully baked end product: A 1H NMR study. Food Chemistry, 2014, 165, 149-156.	4.2	34
206	Milling breakage susceptibility and mechanical properties of parboiled brown rice kernels. LWT - Food Science and Technology, 2014, 59, 369-375.	2.5	28
207	Pyranose Oxidase from <i>Trametes multicolor</i> Impacts Dough and Bread Microstructure. Cereal Chemistry, 2014, 91, 414-417.	1.1	2
208	AACC International: A Winning Combination of Academia, Government, and Industry. Cereal Foods World, 2014, 59, 3-3.	0.7	0
209	The Face of AACC International's Future: Preparing for the Next 100 Years. Cereal Foods World, 2014, 59, 271-271.	0.7	0
210	Effects of Wheat Bran Extract Containing Arabinoxylan Oligosaccharides on Gastrointestinal Parameters in Healthy Preadolescent Children. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58, 647-653.	0.9	50
211	High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects. Molecular Nutrition and Food Research, 2014, 58, 2206-2218.	1.5	22
212	Incubation of Isolated Wheat Starch with Proteolytic or Lipolytic Enzymes and Different Extraction Media Reveals a Tight Interaction Between Puroindolines and Lipids at Its Granule Surface. Cereal Chemistry, 2014, 91, 240-246.	1.1	8
213	Single run HPLC separation coupled to evaporative light scattering detection unravels wheat flour endogenous lipid redistribution during bread dough making. LWT - Food Science and Technology, 2013, 53, 426-433.	2.5	54
214	Flour from wheat cultivars of varying hardness produces semi-sweet biscuits with varying textural and structural properties. LWT - Food Science and Technology, 2013, 53, 452-457.	2.5	29
215	Cereal brans as dietary fibre ingredients. , 2013, , 170-192.		15
216	Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. Plant and Cell Physiology, 2013, 54, 2047-2057.	1.5	49

#	Article	IF	CITATIONS
217	Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chemistry, 2013, 139, 120-128.	4.2	44
218	The impact of baking time and bread storage temperature on bread crumb properties. Food Chemistry, 2013, 141, 3301-3308.	4.2	52
219	Impact of Acid and Alkaline Pretreatments on the Molecular Network of Wheat Gluten and on the Mechanical Properties of Compression-Molded Glassy Wheat Gluten Bioplastics. Journal of Agricultural and Food Chemistry, 2013, 61, 9393-9400.	2.4	26
220	Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (AcipenserÂbaerii). Fish and Shellfish Immunology, 2013, 35, 766-775.	1.6	145
221	Crosslinks in wheat gluten films with hexagonal close-packed protein structures. Industrial Crops and Products, 2013, 51, 229-235.	2.5	20
222	Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough. Food Chemistry, 2013, 141, 4179-4185.	4.2	29
223	Ingredient functionality in batter type cake making. Trends in Food Science and Technology, 2013, 30, 6-15.	7.8	202
224	Analysis of Storage and Structural Carbohydrates in Developing Wheat (<i>Triticum aestivum</i> L.) Grains Using Quantitative Analysis and Microscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 9251-9259.	2.4	21
225	Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties. Food Chemistry, 2013, 139, 1113-1120.	4.2	18
226	Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (<i>Acipenser) Tj ETQq0 0 0 rg Microbiology Ecology, 2013, 86, 357-371.</i>	gBT /Overloc 1.3	k 10 Tf 50 38 80
227	Ferulic Acid Content and Appearance Determine the Antioxidant Capacity of Arabinoxylanoligosaccharides. Journal of Agricultural and Food Chemistry, 2013, 61, 10173-10182.	2.4	37
228	Fibre-enriched beverages. , 2013, , 369-388.		6
229	Health aspects of dietary fibre. , 2013, , 61-75.		6
230	A novel method for hydrophobin extraction using CO2 foam fractionation system. Industrial Crops and Products, 2013, 43, 372-377.	2.5	35
231	Determination of the xylan backbone distribution of arabinoxylan-oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 2013, 2, 84-91.	1.5	4
232	Effect of the mashing process on the performance of a lipophilic hop extract to reduce the primary gushing of beer. Cerevisia, 2013, 38, 71-76.	0.4	5
233	Impact of processing conditions on the extractability and molecular weight distribution of proteins in parboiled brown rice. Journal of Cereal Science, 2013, 58, 8-14.	1.8	24
234	Effect of molding conditions and moisture content on the mechanical properties of compression molded glassy, wheat gluten bioplastics. Industrial Crops and Products, 2013, 44, 480-487.	2.5	37

37

#	Article	IF	CITATIONS
235	Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chemistry, 2013, 136, 301-308.	4.2	95
236	The breakage susceptibility of raw and parboiled rice: A review. Journal of Food Engineering, 2013, 117, 304-315.	2.7	127
237	Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 2013, 136, 1243-1248.	4.2	99
238	Impact of Amylases on Biopolymer Dynamics during Storage of Straight-Dough Wheat Bread. Journal of Agricultural and Food Chemistry, 2013, 61, 6525-6532.	2.4	38
239	Importance of Thiol-Functionalized Molecules for the Structure and Properties of Compression-Molded Glassy Wheat Gluten Bioplastics. Journal of Agricultural and Food Chemistry, 2013, 61, 10516-10524.	2.4	10
240	Maximizing the Concentrations of Wheat Grain Fructans in Bread by Exploring Strategies To Prevent Their Yeast (Saccharomyces cerevisiae)-Mediated Degradation. Journal of Agricultural and Food Chemistry, 2013, 61, 1397-1404.	2.4	45
241	Fibre in extruded products. , 2013, , 256-272.		7
242	Biopolymer Interactions, Water Dynamics, and Bread Crumb Firming. Journal of Agricultural and Food Chemistry, 2013, 61, 4646-4654.	2.4	108
243	Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chemistry, 2013, 141, 3960-3966.	4.2	36
244	Definitions, regulations and health claims associated with dietary fibre and wholegrain foods. , 2013, , 3-24.		4
245	The Bread Dough Stability Improving Effect of Pyranose Oxidase from Trametes multicolor and Glucose Oxidase from Aspergillus niger: Unraveling the Molecular Mechanism. Journal of Agricultural and Food Chemistry, 2013, 61, 7848-7854.	2.4	31
246	Impact of Starch Gelatinization and Kernel Fissuring on the Milling Breakage Susceptibility of Parboiled Brown Rice. Cereal Chemistry, 2013, 90, 490-496.	1.1	13
247	Impact of Heat Treatment on Wheat Flour Solvent Retention Capacity (SRC) Profiles. Cereal Chemistry, 2013, 90, 608-610.	1.1	19
248	Companion animal nutrition as affected by dietary fibre inclusion. , 2013, , 407-420.		3
249	The Effects of Fresh Eggs, Egg White, and Egg Yolk, Separately and in Combination with Salt, on Mixogram Properties. Cereal Chemistry, 2013, 90, 269-272.	1.1	13
250	Fibre-enriched and whole wheat pasta. , 2013, , 273-290.		3
251	Fibre-enriched meat products. , 2013, , 329-347.		7

The range of dietary fibre ingredients and a comparison of their technical functionality. , 2013, , 96-119.

#	Article	IF	CITATIONS
253	Performance of resistant starches in baking: a case study on fibre-rich and wholegrain muffins. , 2013, , 236-255.		Ο
254	Improving the content and composition of dietary fibre in wheat. , 2013, , 153-169.		5
255	Consumption and consumer challenges of wholegrain foods. , 2013, , 120-149.		4
256	Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Scientific Reports, 2013, 3, 2279.	1.6	36
257	Fibre-enriched seafood. , 2013, , 348-368.		2
258	Fibre–enriched and whole wheat noodles. , 2013, , 291-308.		0
259	Wheat (<i>Triticum aestivum</i> L. and <i>T. turgidum</i> L. ssp. <i>durum</i>) Kernel Hardness: II. Implications for Endâ€Product Quality and Role of Puroindolines Therein. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 427-438.	5.9	65
260	Dietary fibre analysis in foods. , 2013, , 25-60.		2
261	Fibre-enriched dairy products. , 2013, , 311-328.		1
262	Soluble and insoluble fibre in infant nutrition. , 2013, , 421-449.		1
263	Fibre-enriched snack foods. , 2013, , 389-406.		4
264	Wheat (<i>Triticum aestivum</i> L. and <i>T. turgidum</i> L. ssp. <i>durum</i>) Kernel Hardness: I. Current View on the Role of Puroindolines and Polar Lipids. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 413-426.	5.9	61
265	Vegetable, fruit and potato fibres. , 2013, , 193-207.		4
266	Fibre-enriched and wholegrain breads. , 2013, , 211-235.		3
267	Wholegrain foods and health. , 2013, , 76-95.		2
268	Impact of Puroindolines on Semisweet Biscuit Quality: A Fractionation–Reconstitution Approach. Cereal Chemistry, 2013, 90, 564-571.	1.1	7
269	Variability in Arabinoxylan, Xylanase Activity, and Xylanase Inhibitor Levels in Hard Spring Wheat. Cereal Chemistry, 2013, 90, 240-248.	1.1	13
270	Fibre-rich and wholegrain foods. , 2013, , .		13

#	Article	IF	CITATIONS
271	Consumption of Breads Containing In Situ–Produced Arabinoxylan Oligosaccharides Alters Gastrointestinal Effects in Healthy Volunteers3. Journal of Nutrition, 2012, 142, 470-477.	1.3	61
272	Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. British Journal of Nutrition, 2012, 108, 2229-2242.	1.2	106
273	Polymerization Reactions of Wheat Gluten: The Pretzel Case. Cereal Foods World, 2012, 57, 203-208.	0.7	14
274	Combined Modeling and Biophysical Characterisation of CO ₂ Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. Journal of the American Society of Brewing Chemists, 2012, 70, 249-256.	0.8	23
275	Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish and Shellfish Immunology, 2012, 33, 718-724.	1.6	89
276	In Vitro Fermentation of Arabinoxylan Oligosaccharides and Low Molecular Mass Arabinoxylans with Different Structural Properties from Wheat (Triticum aestivum L.) Bran and Psyllium (Plantago ovata) Tj ETQq0 0	0 2gBT /O	ve v lock 10 Tf
277	Assignments of Proton Populations in Dough and Bread Using NMR Relaxometry of Starch, Gluten, and Flour Model Systems. Journal of Agricultural and Food Chemistry, 2012, 60, 5461-5470.	2.4	182
278	A Simple and Accurate Method for Determining Wheat Grain Fructan Content and Average Degree of Polymerization. Journal of Agricultural and Food Chemistry, 2012, 60, 2102-2107.	2.4	81
279	Molecular and Morphological Aspects of Annealing-Induced Stabilization of Starch Crystallites. Biomacromolecules, 2012, 13, 1361-1370.	2.6	43
280	Technologies for enhanced exploitation of the health-promoting potential of cereals. Trends in Food Science and Technology, 2012, 25, 78-86.	7.8	72
281	Heat-Induced Cross-Linking and Degradation of Wheat Gluten, Serum Albumin, and Mixtures Thereof. Journal of Agricultural and Food Chemistry, 2012, 60, 10133-10140.	2.4	37
282	Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat flours. LWT - Food Science and Technology, 2012, 47, 56-63.	2.5	40
283	Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chemistry, 2012, 135, 713-721.	4.2	67
284	Wheat Gluten Functionality as a Quality Determinant in Cereal-Based Food Products. Annual Review of Food Science and Technology, 2012, 3, 469-492.	5.1	391
285	Wheat Gluten Amino Acid Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Methods in Molecular Biology, 2012, 828, 329-337.	0.4	4
286	Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Critical Reviews in Biotechnology, 2012, 32, 93-107.	5.1	80
287	Starch isolation method impacts soft wheat (Triticum aestivum L. cv. Claire) starch puroindoline and lipid levels as well as its functional properties. Journal of Cereal Science, 2012, 56, 464-469.	1.8	30
288	A reassessment of the electrophoretic mobility of high molecular weight glutenin subunits of wheat. Journal of Cereal Science, 2012, 56, 726-732.	1.8	35

#	Article	IF	CITATIONS
289	Kernel Components of Technological Value. , 2012, , 85-124.		9
290	Monitoring Molecular Oxygen Depletion in Wheat Flour Dough Using Erythrosin B Phosphorescence: A Biophysical Approach. Food Biophysics, 2012, 7, 138-144.	1.4	20
291	Importance of Gluten and Starch for Structural and Textural Properties of Crumb from Fresh and Stored Bread. Food Biophysics, 2012, 7, 173-181.	1.4	43
292	Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids, 2012, 42, 2429-2438.	1.2	28
293	Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase. Analytical Biochemistry, 2012, 420, 90-92.	1.1	10
294	Dynamics of Î ³ -aminobutyric acid in wheat flour bread making. Food Chemistry, 2012, 130, 896-901.	4.2	28
295	Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chemistry, 2012, 131, 111-118.	4.2	57
296	Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry, 2012, 131, 1485-1492.	4.2	30
297	Hydrolysis of β-limit dextrins by α-amylases from porcine pancreas, Bacillus subtilis, Pseudomonas saccharophila and Bacillus stearothermophilus. Food Hydrocolloids, 2012, 26, 231-239.	5.6	20
298	Glucose and pyranose oxidase improve bread dough stability. Journal of Cereal Science, 2012, 55, 380-384.	1.8	26
299	Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Critical Reviews in Food Science and Nutrition, 2011, 51, 178-194.	5.4	458
300	Kinetics of Heat-Induced Polymerization of Gliadin. Journal of Agricultural and Food Chemistry, 2011, 59, 2034-2039.	2.4	38
301	Inactive Fluorescently Labeled Xylanase as a Novel Probe for Microscopic Analysis of Arabinoxylan Containing Cereal Cell Walls. Journal of Agricultural and Food Chemistry, 2011, 59, 6369-6375.	2.4	40
302	Identification of Isopeptide Bonds in Heat-Treated Wheat Gluten Peptides. Journal of Agricultural and Food Chemistry, 2011, 59, 1236-1243.	2.4	54
303	Hydrophobins, beer foaming and gushing. Cerevisia, 2011, 35, 85-101.	0.4	49
304	Use of Psychrophilic Xylanases Provides Insight into the Xylanase Functionality in Bread Making. Journal of Agricultural and Food Chemistry, 2011, 59, 9553-9562.	2.4	62
305	Both Substrate Hydrolysis and Secondary Substrate Binding Determine Xylanase Mobility as Assessed by FRAP. Journal of Physical Chemistry B, 2011, 115, 4810-4817.	1.2	14
306	Foaming Properties of Wheat Gliadin. Journal of Agricultural and Food Chemistry, 2011, 59, 1370-1375.	2.4	70

#	Article	IF	CITATIONS
307	Study of grain cell wall structures by microscopic analysis with four different staining techniques. Journal of Cereal Science, 2011, , .	1.8	1
308	Arabinoxylan oligosaccharides (AXOS) as a potential sucrose replacer in sugar-snap cookies. LWT - Food Science and Technology, 2011, 44, 725-728.	2.5	34
309	Colorimetric determination of dehydroalanine in wheat gluten. Journal of Cereal Science, 2011, 54, 148-150.	1.8	13
310	Dynamic Light Scattering (DLS) as a Tool to Detect CO2-Hydrophobin Structures and Study the Primary Gushing Potential of Beer. Journal of the American Society of Brewing Chemists, 2011, 69, 144-149.	0.8	23
311	In Situ Production of Prebiotic AXOS by Hyperthermophilic Xylanase B from <i>Thermotoga maritima</i> in Highâ€Quality Bread. Cereal Chemistry, 2011, 88, 124-129.	1.1	10
312	Secondary substrate binding strongly affects activity and binding affinity of <i>Bacillus subtilis</i> and <i>Aspergillus niger</i> GH11 xylanases. FEBS Journal, 2011, 278, 1098-1111.	2.2	30
313	Relative contribution of wheat flour constituents to Solvent Retention Capacity profiles of European wheats. Journal of Cereal Science, 2011, 53, 312-318.	1.8	68
314	Study of grain cell wall structures by microscopic analysis with four different staining techniques. Journal of Cereal Science, 2011, 54, 363-373.	1.8	63
315	Effect of temperature, time and wheat gluten moisture content on wheat gluten network formation during thermomolding. Journal of Cereal Science, 2011, 54, 434-441.	1.8	56
316	Lipids in bread making: Sources, interactions, and impact on bread quality. Journal of Cereal Science, 2011, 54, 266-279.	1.8	233
317	Structural and physicochemical characterisation of rye starch. Carbohydrate Research, 2011, 346, 2727-2735.	1.1	26
318	Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11, 71-83.	1.4	76
319	Mutational analysis of wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase shows the role of six amino acids in the catalytic mechanism. Applied Microbiology and Biotechnology, 2011, 90, 173-180.	1.7	3
320	The secondary substrate binding site of the Pseudoalteromonas haloplanktis GH8 xylanase is relevant for activity on insoluble but not soluble substrates. Applied Microbiology and Biotechnology, 2011, 92, 539-549.	1.7	11
321	Characterization of two Î ² -xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Applied Microbiology and Biotechnology, 2011, 92, 1179-1185.	1.7	49
322	Crystallization and preliminary X-ray analysis of a cold-active endo-β-1,4-D-xylanase from glycoside hydrolase family 8. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 150-152.	0.7	1
323	Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition and Food Research, 2011, 55, 1862-1874.	1.5	119
324	Foaming properties of tryptic gliadin hydrolysate peptide fractions. Food Chemistry, 2011, 128, 606-612.	4.2	17

#	Article	IF	CITATIONS
325	In situ SAXS under shear unveils the gelation of aqueous starch suspensions and the impact of added amylose–lipid complexes. Carbohydrate Polymers, 2011, 84, 1141-1150.	5.1	22
326	Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases. Enzyme and Microbial Technology, 2011, 49, 305-311.	1.6	5
327	Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates. Food Chemistry, 2011, 127, 1653-1658.	4.2	44
328	Redox agents and N-ethylmaleimide affect the extractability of gluten proteins during fresh pasta processing. Food Chemistry, 2011, 127, 905-911.	4.2	38
329	In situ production of $\hat{1}^3$ -aminobutyric acid in breakfast cereals. Food Chemistry, 2011, 129, 395-401.	4.2	40
330	Wheat flour and vital wheat gluten as biscuit ingredients. , 2011, , 109-133.		7
331	Crystallization and melting of inulin crystals. A small angle X-ray scattering approach (SAXS). Polimery, 2011, 56, 645-651.	0.4	6
332	Manley's technology of biscuits, crackers and cookies. , 2011, , .		50
333	Effect of the Coenzymes NAD(P)(H) in Straightâ€Dough Breadmaking on Protein Properties and Loaf Volume. Cereal Chemistry, 2010, 87, 420-427.	1.1	2
334	Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critical Reviews in Biotechnology, 2010, 30, 176-191.	5.1	216
335	Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9353-9361.	2.4	76
336	Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Applied Microbiology and Biotechnology, 2010, 87, 2125-2135.	1.7	30
337	Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). European Journal of Nutrition, 2010, 49, 127-132.	1.8	51
338	The first characterised wheat (Triticum aestivum L.) member of the nudix hydrolase family shows specificity for NAD(P)(H) and FAD. Journal of Cereal Science, 2010, 51, 319-325.	1.8	1
339	Characterisation of the first wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase resembling mammalian counterparts. Journal of Cereal Science, 2010, 51, 326-336.	1.8	6
340	Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science, 2010, 51, 238-247.	1.8	565
341	Influence of germination time and temperature on the properties of rye malt and rye malt based worts. Journal of Cereal Science, 2010, 52, 72-79.	1.8	22
342	The impact of redox agents on sugar-snap cookie making. Journal of Cereal Science, 2010, 52, 192-199.	1.8	21

#	Article	IF	CITATIONS
343	β-Elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. Journal of Cereal Science, 2010, 52, 362-367.	1.8	70
344	Fractionation of tryptic gliadin hydrolysates based on proline levels. Journal of Cereal Science, 2010, 52, 275-281.	1.8	4
345	Functional xylanase inhibition activity of two molecular forms of recombinant TAXI-IA. Journal of Cereal Science, 2010, 52, 516-519.	1.8	1
346	Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof. Food Hydrocolloids, 2010, 24, 307-317.	5.6	88
347	Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocolloids, 2010, 24, 424-433.	5.6	77
348	Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns. Journal of Biotechnology, 2010, 145, 160-167.	1.9	18
349	Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination. Plant Physiology and Biochemistry, 2010, 48, 90-97.	2.8	29
350	A model approach to starch and protein functionality in a pound cake system. Food Chemistry, 2010, 120, 44-51.	4.2	87
351	Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chemistry, 2010, 123, 331-337.	4.2	25
352	Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydrate Research, 2010, 345, 397-401.	1.1	40
353	Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 977-985.	1.1	37
354	Hydrolysis of amylopectin by amylolytic enzymes: structural analysis of the residual amylopectin population. Carbohydrate Research, 2010, 345, 235-242.	1.1	43
355	Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: Rheological, biochemical and microstructural background. Food Chemistry, 2010, 119, 1465-1473.	4.2	110
356	The impact of the protein network on the pasting and cooking properties of dry pasta products. Food Chemistry, 2010, 120, 371-378.	4.2	147
357	Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chemistry, 2010, 121, 719-723.	4.2	53
358	2â€Ð DIGE reveals changes in wheat xylanase inhibitor protein families due to <i>Fusarium graminearum</i> Δ <i>Tri5</i> infection and grain development. Proteomics, 2010, 10, 2303-2319.	1.3	28
359	Crystal structure of the noncompetitive xylanase inhibitor TLXI, member of the small thaumatinâ€like protein family. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2391-2394.	1.5	14
360	Baking Gradients Cause Heterogeneity in Starch and Proteins in Pound Cake. Cereal Chemistry, 2010, 87, 475-480.	1.1	20

#	Article	IF	CITATIONS
361	Impact of Fat on Dough and Cookie Properties of Sugar‧nap Cookies. Cereal Chemistry, 2010, 87, 226-230.	1.1	32
362	Wheat Bran AX Properties and Choice of Xylanase Affect Enzymic Production of Wheat Branâ€Derived Arabinoxylanâ€Oligosaccharides. Cereal Chemistry, 2010, 87, 283-291.	1.1	30
363	T2026 A Dietary Intervention With Arabinoxylan Oligosaccharides Reduces Colonic Protein Fermentation in Healthy Subjects: Results From Faecal Metabolite Fingerprint Analysis. Gastroenterology, 2010, 138, S-616.	0.6	3
364	Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. British Journal of Nutrition, 2010, 103, 703-713.	1.2	125
365	Variability in Xylanase and Xylanase Inhibition Activities in Different Cereals in the HEALTHGRAIN Diversity Screen and Contribution of Environment and Genotype to This Variability in Common Wheat. Journal of Agricultural and Food Chemistry, 2010, 58, 9362-9371.	2.4	42
366	Impact of Potassium Bromate and Potassium Iodate in a Pound Cake System. Journal of Agricultural and Food Chemistry, 2010, 58, 6465-6471.	2.4	17
367	Molecular Basis of Processing Wheat Gluten toward Biobased Materials. Biomacromolecules, 2010, 11, 533-541.	2.6	163
368	The Kinetics of β-Elimination of Cystine and the Formation of Lanthionine in Gliadin. Journal of Agricultural and Food Chemistry, 2010, 58, 10761-10767.	2.4	39
369	Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9372-9383.	2.4	73
370	Functionality of Short Chain Amyloseâ `'Lipid Complexes in Starchâ `'Water Systems and Their Impact on in Vitro Starch Degradation. Journal of Agricultural and Food Chemistry, 2010, 58, 1939-1945.	2.4	81
371	Flour Sodium Dodecyl Sulfate (SDS)-Extractable Protein Level as a Cookie Flour Quality Indicator. Journal of Agricultural and Food Chemistry, 2010, 58, 353-360.	2.4	18
372	Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochemical and Biophysical Research Communications, 2010, 402, 644-650.	1.0	66
373	Accumulated Evidence Substantiates a Role for Three Classes of Wheat Xylanase Inhibitors in Plant Defense. Critical Reviews in Plant Sciences, 2010, 29, 244-264.	2.7	40
374	Fate of Starch in Food Processing: From Raw Materials to Final Food Products. Annual Review of Food Science and Technology, 2010, 1, 87-111.	5.1	104
375	Principles of Cereal Science and Technology. , 2010, , .		332
376	Principles of Cereal Science and Technology Authors Provide Insight into the Current State of Cereal Processing. Cereal Foods World, 2010, , .	0.7	5
377	More of the GrainProgress in the HEALTHGRAIN Project for Healthy Cereal Foods. Cereal Foods World, 2010, , .	0.7	2
378	QUANTIFICATION OF ARABINOXYLANS AND THEIR DEGREE OF BRANCHING USING GAS CHROMATOGRAPHY. , 2009, , 177-189.		9

#	Article	IF	CITATIONS
379	Characterization of Kafirins in Algerian Sorghum Cultivars. Cereal Chemistry, 2009, 86, 487-491.	1.1	11
380	Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Protein Engineering, Design and Selection, 2009, 22, 587-596.	1.0	36
381	Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking – A review. Journal of Cereal Science, 2009, 50, 11-21.	1.8	146
382	Endogenous redox agents and enzymes that affect protein network formation during breadmaking – A review. Journal of Cereal Science, 2009, 50, 1-10.	1.8	79
383	Amylases and bread firming – an integrated view. Journal of Cereal Science, 2009, 50, 345-352.	1.8	226
384	Residual amylopectin structures of amylase-treated wheat starch slurries reflect amylase mode of action. Food Hydrocolloids, 2009, 23, 153-164.	5.6	31
385	Crystallographic and activityâ€based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins: Structure, Function and Bioinformatics, 2009, 77, 395-403.	1.5	45
386	Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures <i>in vitro</i> . Journal of Applied Microbiology, 2009, 106, 932-940.	1.4	61
387	Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI″A and TAXI″IA. FEBS Journal, 2009, 276, 3916-3927.	2.2	37
388	Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 2009, 69, 231-242.	1.3	166
389	Fusarium graminearum xylanases show different functional stabilities, substrate specificities and inhibition sensitivities. Enzyme and Microbial Technology, 2009, 44, 189-195.	1.6	30
390	Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chemistry, 2009, 112, 831-837.	4.2	129
391	The role of sugar and fat in sugar-snap cookies: Structural and textural properties. Journal of Food Engineering, 2009, 90, 400-408.	2.7	198
392	A quantitative portrait of three xylanase inhibiting protein families in different wheat cultivars using 2D-DIGE and multivariate statistical tools. Journal of Proteomics, 2009, 72, 484-500.	1.2	15
393	Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. Journal of Chromatography A, 2009, 1216, 5557-5562.	1.8	122
394	Extractability and chemical and enzymic degradation of psyllium (Plantago ovata Forsk) seed husk arabinoxylans. Food Chemistry, 2009, 112, 812-819.	4.2	63
395	Production of tailor made short chain amylose–lipid complexes using varying reaction conditions. Carbohydrate Polymers, 2009, 78, 854-861.	5.1	39
396	Arabinoxylanâ€oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microbial Biotechnology, 2009, 2, 101-113.	2.0	144

#	Article	IF	CITATIONS
397	Occurrence of Arabinoxylo-Oligosaccharides and Arabinogalactan Peptides in Beer. Journal of the American Society of Brewing Chemists, 2009, 67, 112-117.	0.8	24
398	Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochemical Journal, 2009, 418, 39-47.	1.7	72
399	Algerian Pearl Millet (Pennisetum glaucum L.) Contains XIP but Not TAXI and TLXI Type Xylanase Inhibitors. Journal of Agricultural and Food Chemistry, 2009, 57, 5542-5548.	2.4	4
400	Immunoblot Quantification of Three Classes of Proteinaceous Xylanase Inhibitors in Different Wheat (Triticum aestivum) Cultivars and Milling Fractions. Journal of Agricultural and Food Chemistry, 2009, 57, 1029-1035.	2.4	17
401	Presence of Amylose Crystallites in Parboiled Rice. Journal of Agricultural and Food Chemistry, 2009, 57, 3210-3216.	2.4	57
402	Fractionation and Characterization of Brewers' Spent Grain Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2009, 57, 5563-5570.	2.4	27
403	Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends in Food Science and Technology, 2009, 20, 495-510.	7.8	70
404	The three classes of wheat xylanase-inhibiting proteins accumulate in an analogous way during wheat ear development and germination. Journal of Plant Physiology, 2009, 166, 1253-1262.	1.6	17
405	Extensive Dry Ball Milling of Wheat and Rye Bran Leads to <i>in Situ</i> Production of Arabinoxylan Oligosaccharides through Nanoscale Fragmentation. Journal of Agricultural and Food Chemistry, 2009, 57, 8467-8473.	2.4	85
406	Sugar-Snap Cookie Dough Setting: The Impact of Sucrose on Gluten Functionality. Journal of Agricultural and Food Chemistry, 2009, 57, 7814-7818.	2.4	43
407	Antifirming Effects of Starch Degrading Enzymes in Bread Crumb. Journal of Agricultural and Food Chemistry, 2009, 57, 2346-2355.	2.4	104
408	Biochemical and structural characterization of TLXI, the <i>Triticum aestivum</i> L. thaumatin-like xylanase inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 646-654.	2.5	54
409	His22 of TLXI plays a critical role in the inhibition of glycoside hydrolase family 11 xylanases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 38-46.	2.5	8
410	A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls. Australian Journal of Chemistry, 2009, 62, 533.	0.5	84
411	ENZYMES IN THE PRODUCTION OF FUNCTIONAL FOOD INGREDIENTS—THE ARABINOXYLAN CASE. , 2009, , 129-140.		0
412	Variability of polymorphic families of three types of xylanase inhibitors in the wheat grain proteome. Proteomics, 2008, 8, 1692-1705.	1.3	20
413	Effects of dietary inclusion of xylooligo―saccharides, arabinoxylooligosaccha―rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. Journal of the Science of Food and Agriculture, 2008, 88, 2517-2522.	1.7	71
414	Glucuronoarabinoxylan structure in the walls of Aechmea leaf chlorenchyma cells is related to wall strength. Phytochemistry, 2008, 69, 2307-2311.	1.4	12

#	Article	IF	CITATIONS
415	Drying model for cylindrical pasta shapes using desorption isotherms. Journal of Food Engineering, 2008, 86, 414-421.	2.7	22
416	The role of gluten in a pound cake system: A model approach based on gluten–starch blends. Food Chemistry, 2008, 110, 909-915.	4.2	152
417	Impact of parboiling conditions on Maillard precursors and indicators in long-grain rice cultivars. Food Chemistry, 2008, 110, 916-922.	4.2	71
418	Study of nonenzymic browning in α-amino acid and γ-aminobutyric acid/sugar model systems. Food Chemistry, 2008, 111, 738-744.	4.2	46
419	Mechanism of gliadin–glutenin cross-linking during hydrothermal treatment. Food Chemistry, 2008, 107, 753-760.	4.2	164
420	Dietary Inclusion of Wheat Bran Arabinoxylooligosaccharides Induces Beneficial Nutritional Effects in Chickens. Cereal Chemistry, 2008, 85, 607-613.	1.1	108
421	Amylase action pattern on starch polymers. Biologia (Poland), 2008, 63, 989-999.	0.8	71
422	Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47, 180-189.	1.8	71
423	Effects of fungicide treatment, N-fertilisation and harvest date on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47, 190-200.	1.8	19
424	Sorghum (Sorghum bicolor L. Moench) contains a XIP-type xylanase inhibitor but none of the TAXI- and TLXI-types. Journal of Cereal Science, 2008, 48, 203-212.	1.8	7
425	The role of gluten in a sugar-snap cookie system: A model approach based on gluten–starch blends. Journal of Cereal Science, 2008, 48, 863-869.	1.8	90
426	Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9777-9784.	2.4	152
427	Crystallographic analysis shows substrate binding at the â^'3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases. Biochemical Journal, 2008, 410, 71-79.	1.7	64
428	Carotenoids in Raw and Parboiled Brown and Milled Rice. Journal of Agricultural and Food Chemistry, 2008, 56, 11914-11919.	2.4	75
429	Reaction Kinetics of Gliadinâ^'Glutenin Cross-Linking in Model Systems and in Bread Making. Journal of Agricultural and Food Chemistry, 2008, 56, 10660-10666.	2.4	78
430	Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9767-9776.	2.4	185
431	Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9758-9766.	2.4	150
432	Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9740-9749.	2.4	211

#	Article	IF	CITATIONS
433	Effect of arabinoxylo-oligosaccharides on proximal gastrointestinal motility and digestion in healthy volunteers. European E-journal of Clinical Nutrition and Metabolism, 2008, 3, e220-e225.	0.4	4
434	Phage display based identification of novel stabilizing mutations in glycosyl hydrolase family 11 B. subtilis endoxylanase XynA. Biochemical and Biophysical Research Communications, 2008, 368, 74-80.	1.0	9
435	Impact of thermostable amylases during bread making on wheat bread crumb structure and texture. Food Research International, 2008, 41, 819-827.	2.9	42
436	Use of enzymes in the production of cereal-based functional foods and food ingredients. , 2008, , 237-265.		8
437	W1382 The Bifidogenic Potential of Arabinoxylo-Oligosaccharides in Healthy Volunteers Depends On the Degree of Polymerisation. Gastroenterology, 2008, 134, A-692.	0.6	5
438	W1383 The Effect of Two Different Doses of Arabinoxylo-Oligosaccharides and Oligofructose Enriched Inulin On the Colonic Ammonia Metabolism in Healthy Volunteers. Gastroenterology, 2008, 134, A-693.	0.6	1
439	The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Critical Reviews in Food Science and Nutrition, 2008, 48, 824-839.	5.4	249
440	Dose-Response Effect of Arabinoxylooligosaccharides on Gastrointestinal Motility and on Colonic Bacterial Metabolism in Healthy Volunteers. Journal of the American College of Nutrition, 2008, 27, 512-518.	1.1	53
441	Contribution of Wheat Endogenous and Wheat Kernel Associated Microbial Endoxylanases to Changes in the Arabinoxylan Population during Breadmaking. Journal of Agricultural and Food Chemistry, 2008, 56, 2246-2253.	2.4	26
442	Ball Milling Improves Extractability and Affects Molecular Properties of Psyllium (<i>Plantago) Tj ETQqO O O rgBT 11306-11311.</i>	/Overlock 2.4	10 Tf 50 387 37
443	Xylanase Inhibitors Bind to Nonstarch Polysaccharides. Journal of Agricultural and Food Chemistry, 2008, 56, 564-570.	2.4	26
444	Model Approach to Starch Functionality in Bread Making. Journal of Agricultural and Food Chemistry, 2008, 56, 6423-6431.	2.4	34
445	Arabinoxylooligosaccharides from Wheat Bran Inhibit Salmonella Colonization in Broiler Chickens. Poultry Science, 2008, 87, 2329-2334.	1.5	87
446	Structurally Different Wheat-Derived Arabinoxylooligosaccharides Have Different Prebiotic and Fermentation Properties in Rats1,. Journal of Nutrition, 2008, 138, 2348-2355.	1.3	176
447	Quantification of Wheat TAXI and XIP Type Xylanase Inhibitors: A Comparison of Analytical Techniques. Cereal Chemistry, 2008, 85, 586-590.	1.1	3
448	Mechanism of Gliadin-Glutenin Linking During Bread Baking. , 2008, , 74-77.		0
449	Beyond Whole Grain: The European HEALTHGRAIN Project Aims at Healthier Cereal Foods. Cereal Foods World, 2008, , .	0.7	14
450	Wheat Flour Associated Xylanases Affect the AX Population in Dough. , 2008, , 33-36.		0

#	Article	IF	CITATIONS
451	TLXI, a novel typeÂof xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochemical Journal, 2007, 403, 583-591.	1.7	125
452	Recombinant Expression and Characterization of a Reducing-End Xylose-Releasing Exo-Oligoxylanase from Bifidobacterium adolescentis. Applied and Environmental Microbiology, 2007, 73, 5374-5377.	1.4	47
453	Mutational Analysis of Endoxylanases XylA and XylB from the Phytopathogen Fusarium graminearum Reveals Comprehensive Insights into Their Inhibitor Insensitivity. Applied and Environmental Microbiology, 2007, 73, 4602-4608.	1.4	27
454	Unprocessed barley aleurone endo-β-1,4-xylanase X-I is an active enzyme. Biochemical and Biophysical Research Communications, 2007, 356, 799-804.	1.0	27
455	Targeted molecular engineering of a family 11 endoxylanase to decrease its sensitivity towards Triticum aestivum endoxylanase inhibitor types. Journal of Biotechnology, 2007, 130, 95-105.	1.9	21
456	Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science and Technology, 2007, 18, 64-71.	7.8	187
457	Variability in the Structure of Rye Flour Alkali-Extractable Arabinoxylans. Journal of Agricultural and Food Chemistry, 2007, 55, 1985-1992.	2.4	30
458	Indirect Enzyme–Antibody Sandwich Enzyme-Linked Immunosorbent Assay for Quantification of TAXI and XIP Type Xylanase Inhibitors in Wheat and Other Cereals. Journal of Agricultural and Food Chemistry, 2007, 55, 7682-7688.	2.4	7
459	Impact of Redox Agents on the Extractability of Gluten Proteins during Bread Making. Journal of Agricultural and Food Chemistry, 2007, 55, 5320-5325.	2.4	91
460	Enzymatic Hydrolysis of Brewers' Spent Grain Proteins and Technofunctional Properties of the Resulting Hydrolysates. Journal of Agricultural and Food Chemistry, 2007, 55, 8703-8710.	2.4	138
461	Impact of Wheat Flour-Associated Endoxylanases on Arabinoxylan in Dough after Mixing and Resting. Journal of Agricultural and Food Chemistry, 2007, 55, 7149-7155.	2.4	32
462	Temperature Impacts the Multiple Attack Action of Amylases. Biomacromolecules, 2007, 8, 765-772.	2.6	38
463	Engineering molecular recognition of endoxylanase enzymes and their inhibitors through phage display. Journal of Molecular Recognition, 2007, 20, 103-112.	1.1	16
464	Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis. Enzyme and Microbial Technology, 2007, 41, 85-91.	1.6	8
465	Effect of milling on colour and nutritional properties of rice. Food Chemistry, 2007, 100, 1496-1503.	4.2	196
466	Crystallization and preliminary X-ray analysis of an arabinoxylan arabinofuranohydrolase fromBacillus subtilis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 692-694.	0.7	5
467	Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase. Applied Microbiology and Biotechnology, 2007, 75, 1309-1317.	1.7	50
468	Critical Factors Governing Gluten Protein Agglomeration on a Micro-scale. Special Publication - Royal Society of Chemistry, 2007, , 292-295.	0.0	0

#	Article	IF	CITATIONS
469	Structural Transformations during Gelatinization of Starches in Limited Water:Â Combined Wide- and Small-Angle X-ray Scattering Study. Biomacromolecules, 2006, 7, 1231-1238.	2.6	54
470	Impact of Browning Reactions and Bran Pigments on Color of Parboiled Rice. Journal of Agricultural and Food Chemistry, 2006, 54, 9924-9929.	2.4	103
471	Amyloseâ~Lipid Complexes as Controlled Lipid Release Agents during Starch Gelatinization and Pasting. Journal of Agricultural and Food Chemistry, 2006, 54, 1493-1499.	2.4	88
472	Wheat-Kernel-Associated Endoxylanases Consist of a Majority of Microbial and a Minority of Wheat Endogenous Endoxylanases. Journal of Agricultural and Food Chemistry, 2006, 54, 4028-4034.	2.4	44
473	Insight into the Distribution of Arabinoxylans, Endoxylanases, and Endoxylanase Inhibitors in Industrial Wheat Roller Mill Streams. Journal of Agricul Chemistry, 2006, 54, 8521-8529.	tuzal and	Fcand
474	Gelatinization of Starch in Excess Water:Â Beyond the Melting of Lamellar Crystallites. A Combined Wide- and Small-Angle X-ray Scattering Study. Biomacromolecules, 2006, 7, 2624-2630.	2.6	103
475	Non-contact ultrasound characterization of bread crumb: Application of the Biot–Allard model. Food Research International, 2006, 39, 1067-1075.	2.9	32
476	Proteinaceous Xylanase Inhibitors: Structure, Function and Evolution. Current Enzyme Inhibition, 2006, 2, 29-35.	0.3	11
477	Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination, 2006, 191, 245-253.	4.0	144
478	An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers, 2006, 64, 364-375.	5.1	207
479	Non-digestible Oligosaccharides with Prebiotic Properties. Critical Reviews in Food Science and Nutrition, 2006, 46, 459-471.	5.4	276
480	Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. Journal of Cereal Science, 2006, 44, 59-67.	1.8	19
481	Impact of redox agents on the physico-chemistry of wheat gluten proteins during hydrothermal treatment. Journal of Cereal Science, 2006, 44, 49-53.	1.8	40
482	Extractability and chromatographic separation of rice endosperm proteins. Journal of Cereal Science, 2006, 44, 68-74.	1.8	69
483	The effects of malting and mashing on barley protein extractability. Journal of Cereal Science, 2006, 44, 203-211.	1.8	176
484	Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. Journal of the Science of Food and Agriculture, 2006, 86, 1722-1731.	1.7	122
485	Arabinoxylans and endoxylanases in refrigerated dough syruping. Journal of the Science of Food and Agriculture, 2006, 86, 1587-1595.	1.7	20
486	Insight into variability of apparent endoxylanase and endoxylanase inhibitor levels in wheat kernels. Journal of the Science of Food and Agriculture, 2006, 86, 1610-1617.	1.7	29

#	Article	IF	CITATIONS
487	Influence of amylases on the rheological and molecular properties of partially damaged wheat starch. Journal of the Science of Food and Agriculture, 2006, 86, 1662-1669.	1.7	19
488	Effect of Processing Conditions on Color Change of Brown and Milled Parboiled Rice. Cereal Chemistry, 2006, 83, 80-85.	1.1	65
489	The bread-making functionalities of two Aspergillus niger endoxylanases are strongly dictated by their inhibitor sensitivities. Enzyme and Microbial Technology, 2005, 36, 417-425.	1.6	21
490	Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydrate Polymers, 2005, 60, 379-389.	5.1	108
491	Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydrate Polymers, 2005, 62, 205-213.	5.1	45
492	Gelatinisation related structural aspects of small and large wheat starch granules. Carbohydrate Polymers, 2005, 62, 170-181.	5.1	82
493	Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydrate Polymers, 2005, 62, 283-292.	5.1	111
494	Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydrate Research, 2005, 340, 1319-1327.	1.1	42
495	His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases. FEBS Journal, 2005, 272, 5872-5882.	2.2	30
496	Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. Journal of Cereal Science, 2005, 41, 221-237.	1.8	237
497	Isolation of cereal arabinogalactan-peptides and structural comparison of their carbohydrate and peptide moieties. Journal of Cereal Science, 2005, 41, 59-67.	1.8	63
498	Variation in the levels of the different xylanase inhibitors in grain and flour of 20 French wheat cultivars. Journal of Cereal Science, 2005, 41, 375-379.	1.8	35
499	Starch gelatinization and amylose–lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. Journal of Cereal Science, 2005, 42, 334-343.	1.8	136
500	The impact of heating and cooling on the physico-chemical properties of wheat gluten–water suspensions. Journal of Cereal Science, 2005, 42, 327-333.	1.8	128
501	Impact of Proteins on Pasting and Cooking Properties of Nonparboiled and Parboiled Rice. Cereal Chemistry, 2005, 82, 468-474.	1.1	144
502	Purification and characterization of a XIP-type endoxylanase inhibitor from Rice (Oryza sativa). Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 95-101.	2.5	35
503	Evidence for the Involvement of Arabinoxylan and Xylanases in Refrigerated Dough Syruping. Journal of Agricultural and Food Chemistry, 2005, 53, 7623-7629.	2.4	35
504	Potato Phosphorylase Catalyzed Synthesis of Amyloseâ^'Lipid Complexes. Biomacromolecules, 2005, 6, 2622-2629.	2.6	47

#	Article	IF	CITATIONS
505	Enzymic Degradability of Hull-less Barley Flour Alkali-Solubilized Arabinoxylan Fractions by Endoxylanases. Journal of Agricultural and Food Chemistry, 2005, 53, 7243-7250.	2.4	11
506	Molecular identification of wheat endoxylanase inhibitor TAXI-II and the determinants of its inhibition specificity. Biochemical and Biophysical Research Communications, 2005, 335, 512-522.	1.0	23
507	Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science and Technology, 2005, 16, 12-30.	7.8	739
508	Detecting the structural determinants of glycosyl hydrolase family 11 xylanase inhibition. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c197-c197.	0.3	0
509	Combined Effects of Endoxylanases and Reduced Water Levels in Pasta Production. Cereal Chemistry, 2004, 81, 361-368.	1.1	15
510	Structural Basis for Inhibition of Aspergillus niger Xylanase by Triticum aestivum Xylanase Inhibitor-I. Journal of Biological Chemistry, 2004, 279, 36022-36028.	1.6	113
511	Isolation and Characterization of Water-Extractable Arabinoxylan from Hull-less Barley Flours. Cereal Chemistry, 2004, 81, 576-581.	1.1	35
512	Relative activity of two endoxylanases towards water-unextractable arabinoxylans in wheat bran. Journal of Cereal Science, 2004, 39, 181-186.	1.8	41
513	Debranning of wheat prior to milling reduces xylanase but not xylanase inhibitor activities in wholemeal and flour. Journal of Cereal Science, 2004, 39, 363-369.	1.8	44
514	Reduction of xylanase activity in flour by debranning retards syruping in refrigerated doughs. Journal of Cereal Science, 2004, 39, 371-377.	1.8	32
515	Substrate selectivity and inhibitor sensitivity affect xylanase functionality in wheat flour gluten–starch separation. Journal of Cereal Science, 2004, 40, 41-49.	1.8	43
516	The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-β-D-glucan levels. Journal of Cereal Science, 2004, 40, 257-267.	1.8	104
517	Influence of process parameters on yield and composition of gluten fractions obtained in a laboratory scale dough batter procedure. Journal of Cereal Science, 2004, 39, 29-36.	1.8	23
518	Isolation and characterisation of rye starch. Journal of Cereal Science, 2004, 39, 85-90.	1.8	58
519	Molecular identification and chromosomal localization of genes encoding Triticum aestivum xylanase inhibitor I-like proteins in cereals. Theoretical and Applied Genetics, 2004, 109, 112-121.	1.8	27
520	Crystallization and preliminary X-ray diffraction study of two complexes of a TAXI-type xylanase inhibitor with glycoside hydrolase family 11 xylanases fromAspergillus nigerandBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 555-557.	2.5	11
521	Occurrence of proteinaceous endoxylanase inhibitors in cereals. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 193-202.	1.1	73
522	Potential physiological role of plant glycosidase inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics. 2004. 1696. 265-274.	1.1	64

#	Article	IF	CITATIONS
523	Amylose–lipid complexation: a new fractionation method. Carbohydrate Polymers, 2004, 56, 447-458.	5.1	158
524	From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers, 2004, 58, 245-266.	5.1	244
525	Properties of TAXI-type endoxylanase inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 213-221.	1.1	104
526	Potential role of glycosidase inhibitors in industrial biotechnological applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 275-287.	1.1	74
527	Water-Extractable and Water-Unextractable Arabinoxylans Affect Gluten Agglomeration Behavior during Wheat Flour Glutenâ^'Starch Separation. Journal of Agricultural and Food Chemistry, 2004, 52, 7950-7956.	2.4	55
528	Amylopectin Molecular Structure Reflected in Macromolecular Organization of Granular Starch. Biomacromolecules, 2004, 5, 1775-1786.	2.6	104
529	Enrichment of Higher Molecular Weight Fractions in Inulin. Journal of Agricultural and Food Chemistry, 2004, 52, 3780-3783.	2.4	43
530	Impact of Inhibition Sensitivity on Endoxylanase Functionality in Wheat Flour Breadmaking. Journal of Agricultural and Food Chemistry, 2004, 52, 4296-4302.	2.4	46
531	Designing New Materials from Wheat Protein. Biomacromolecules, 2004, 5, 1262-1269.	2.6	86
532	Heterogeneity in the Fine Structure of Alkali-Extractable Arabinoxylans Isolated from Two Rye Flours with High and Low Breadmaking Quality and Their Coexistence with Other Cell Wall Components. Journal of Agricultural and Food Chemistry, 2004, 52, 2671-2680.	2.4	31
533	High-level expression, purification, and characterization of recombinant wheat xylanase inhibitor TAXI-I secreted by the yeast Pichia pastoris. Protein Expression and Purification, 2004, 37, 39-46.	0.6	25
534	Structural analysis of a newly identified class of plant protective microbial glycoside hydrolase inhibitors. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s214-s214.	0.3	0
535	Studies on Barley Starchy Endosperm Cell Wall Degradation by Rhizopus VII. Journal of Cereal Science, 2003, 37, 81-90.	1.8	13
536	Extension Properties of Wheat Flour Dough Fortified with Characterised Wheat Gluten Fractions. Journal of Cereal Science, 2003, 37, 151-156.	1.8	9
537	In vitro Polymerisation of High and Low Molecular Weight Glutenin Subunits with Molecular Oxygen. Journal of Cereal Science, 2003, 37, 223-229.	1.8	4
538	Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. Journal of Cereal Science, 2003, 38, 43-52.	1.8	210
539	Rice starches. II. Structural aspects provide insight into swelling and pasting properties. Journal of Cereal Science, 2003, 38, 53-59.	1.8	181
540	Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. Journal of Cereal Science, 2003, 38, 61-68.	1.8	143

#	Article	IF	CITATIONS
541	XIP-type endoxylanase inhibitors in different cereals. Journal of Cereal Science, 2003, 38, 317-324.	1.8	42
542	A screening method for endo-β-1,4-xylanase substrate selectivity. Analytical Biochemistry, 2003, 319, 73-77.	1.1	34
543	Fractionation of starch hydrolysates into dextrins with narrow molecular mass distribution and their detection by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A, 2003, 992, 75-83.	1.8	22
544	Crystallization and preliminary X-ray diffraction study of a wheat (Triticum aestivumL.) TAXI-type endoxylanase inhibitor. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 744-746.	2.5	3
545	Impact of Xylanases with Different Substrate Selectivity on Glutenâ^'Starch Separation of Wheat Flour. Journal of Agricultural and Food Chemistry, 2003, 51, 7338-7345.	2.4	41
546	Structural Features of Arabinoxylans Extracted with Water at Different Temperatures from Two Rye Flours of Diverse Breadmaking Quality. Journal of Agricultural and Food Chemistry, 2003, 51, 4404-4416.	2.4	51
547	TAXI Type Endoxylanase Inhibitors in Different Cereals. Journal of Agricultural and Food Chemistry, 2003, 51, 3770-3775.	2.4	34
548	Molecular identification of wheat endoxylanase inhibitor TAXI-I1, member of a new class of plant proteins. FEBS Letters, 2003, 540, 259-263.	1.3	46
549	Refrigerated Dough Syruping in Relation to the Arabinoxylan Population. Journal of Agricultural and Food Chemistry, 2003, 51, 4119-4125.	2.4	21
550	Milling Performance of North European Hull-less Barleys and Characterization of Resultant Millstreams. Cereal Chemistry, 2003, 80, 667-673.	1.1	36
551	Ambiguous Impact of Wheat Gluten Proteins on the Colloidal Haze of Wheat Beers. Journal of the American Society of Brewing Chemists, 2003, 61, 63-68.	0.8	9
552	Endoxylanase Inhibition Activity in Different European Wheat Cultivars and Milling Fractions. Cereal Chemistry, 2002, 79, 613-616.	1.1	33
553	Proteolytic Enzymes in Germinating Rye Grains. Cereal Chemistry, 2002, 79, 423-428.	1.1	39
554	Purification of TAXI-like Endoxylanase Inhibitors from Wheat (Triticum Aestivum L.) Whole Meal Reveals a Family of Iso-forms. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 61-68.	2.5	29
555	Solubilisation and Degradation of Wheat Cluten Proteins by Barley Malt Proteolytic Enzymes. Journal of the Institute of Brewing, 2002, 108, 348-354.	0.8	12
556	Characterization of the Carbohydrate Part of Arabinogalactan Peptides in Triticum durum desf. Semolina. Cereal Chemistry, 2002, 79, 322-325.	1.1	12
557	Amino Acid Sequence of Wheat Flour Arabinogalactan-Peptide, Identical to Part of Grain Softness Protein GSP-1, Leads to Improved Structural Model. Cereal Chemistry, 2002, 79, 329-331.	1.1	36
558	Effects of Endoxylanase Addition on Pasta Processing with Short Mixing Time. Cereal Chemistry, 2002, 79, 798-800.	1.1	3

#	Article	IF	CITATIONS
559	Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. Critical Reviews in Food Science and Nutrition, 2002, 42, 179-208.	5.4	395
560	Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. Journal of Cereal Science, 2002, 35, 225-243.	1.8	573
561	Structural Characterisation of Water-extractable and Water-unextractable Arabinoxylans in Wheat Bran. Journal of Cereal Science, 2002, 35, 315-326.	1.8	187
562	A Family of â€~TAXI'-like Endoxylanase Inhibitors in Rye. Journal of Cereal Science, 2002, 36, 177-185.	1.8	24
563	Affinity Chromatography with Immobilised Endoxylanases Separates TAXI- and XIP-type Endoxylanase Inhibitors from Wheat (Triticum aestivum L.). Journal of Cereal Science, 2002, 36, 367-375.	1.8	49
564	Behavior ofTriticum durumDesf. Arabinoxylans and Arabinogalactan Peptides during Industrial Pasta Processing. Journal of Agricultural and Food Chemistry, 2001, 49, 1783-1789.	2.4	17
565	Improvement of Malt Modification by Use ofRhizopusVII as Starter Culture. Journal of Agricultural and Food Chemistry, 2001, 49, 3718-3724.	2.4	8
566	Degradation of Starchy Endosperm Cell Walls in Nongerminating Sterilized Barley by Fungi. Journal of Agricultural and Food Chemistry, 2001, 49, 975-981.	2.4	9
567	Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochemical Journal, 2001, 353, 239.	1.7	74
568	Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochemical Journal, 2001, 353, 239-244.	1.7	111
569	Influence of Arabinoxylans and Endoxylanases on Pasta Processing and Quality. Production of High-Quality Pasta with Increased Levels of Soluble Fiber. Cereal Chemistry, 2001, 78, 721-729.	1.1	21
570	Contribution of Wheat and Wheat Protein Fractions to the Colloidal Haze of Wheat Beers. Journal of the American Society of Brewing Chemists, 2001, 59, 135-140.	0.8	21
571	Simple ion chromatographic method for the determination of chlormequat residues in pears. Journal of Chromatography A, 2001, 920, 255-259.	1.8	21
572	Research Note: Endoxylanases and Arabinoxylans in Gluten Isolated in a Batter System. Journal of Cereal Science, 2001, 33, 53-57.	1.8	3
573	Significance of LMW-GS and HMW-GS for Dough Extensibility: «Addition» versus «Incorporation» Protocols. Journal of Cereal Science, 2001, 33, 253-260.	1.8	22
574	Relative Activity of Endoxylanases Towards Water-extractable and Water-unextractable Arabinoxylan. Journal of Cereal Science, 2001, 33, 301-312.	1.8	117
575	Alkaline Hydrogen Peroxide Extraction of Wheat Bran Non-starch Polysaccharides. Journal of Cereal Science, 2001, 34, 29-35.	1.8	119
576	Purification and Partial Characterization of an Endoxylanase Inhibitor from Barley. Cereal Chemistry, 2001. 78, 453-457.	1.1	43

#	Article	IF	CITATIONS
577	Use of Two Endoxylanases with Different Substrate Selectivity for Understanding Arabinoxylan Functionality in Wheat Flour Breadmaking. Cereal Chemistry, 2001, 78, 564-571.	1.1	135
578	Adsorption Studies of Interaction Between Water-Extractable Nonstarch Polysaccharides and Prolamins in Cereals. Cereal Chemistry, 2000, 77, 679-684.	1.1	9
579	In Vitro Polymerization of Wheat Clutenin Subunits with Inorganic Oxidizing Agents. II. Stepwise Oxidation of Low Molecular Weight Clutenin Subunits and a Mixture of High and Low Molecular Weight Clutenin Subunits. Cereal Chemistry, 2000, 77, 589-594.	1.1	22
580	Determination of reducing end sugar residues in oligo- and polysaccharides by gas–liquid chromatography. Journal of Chromatography A, 2000, 866, 97-104.	1.8	117
581	Purification, characterization and structural analysis of an abundant β-1,3-glucanase from banana fruit. FEBS Journal, 2000, 267, 1188-1195.	0.2	45
582	A Second Aspartic Proteinase Associated with Wheat Gluten. Journal of Cereal Science, 2000, 32, 31-42.	1.8	25
583	Research Note: Wheat Cluten Contains a Thioredoxin-Dependent Peroxide Reductase. Journal of Cereal Science, 2000, 32, 43-44.	1.8	0
584	The Significance of Arabinogalactan-Peptide for Wheat Flour Bread-Making. Journal of Cereal Science, 2000, 32, 147-157.	1.8	25
585	Characterisation of the Colloidal Haze in Commercial and Pilot Scale Belgian White Beers. Journal of the Institute of Brewing, 2000, 106, 221-228.	0.8	22
586	Endoxylanases in Durum Wheat Semolina Processing:Â Solubilization of Arabinoxylans, Action of Endogenous Inhibitors, and Effects on Rheological Properties. Journal of Agricultural and Food Chemistry, 2000, 48, 2017-2022.	2.4	31
587	Fractionation and Reconstitution Experiments Provide Insight into the Role of Gluten and Starch Interactions in Pasta Quality. Journal of Agricultural and Food Chemistry, 2000, 48, 3767-3773.	2.4	50
588	The Effect of Larch Arabinogalactan on Mixing Characteristics of Wheat Flour Dough. , 2000, , 293-293.		0
589	In Vitro Polymerization of Wheat Glutenin Subunits with Inorganic Oxidizing Agents. I. Comparison of Single-Step and Stepwise Oxidations of High Molecular Weight Glutenin Subunits. Cereal Chemistry, 2000, 77, 582-588.	1.1	58
590	Fractionation and Reconstitution Experiments Provide Insight into the Role of Starch Gelatinization and Pasting Properties in Pasta Quality. Journal of Agricultural and Food Chemistry, 2000, 48, 3774-3778.	2.4	54
591	Quantitative and Qualitative Study of Arabinogalactan-Peptide During Bread Making. , 2000, , 292-293.		0
592	From Field Barley to Malt: Detection and Specification of Microbial Activity for Quality Aspects. Critical Reviews in Microbiology, 1999, 25, 121-153.	2.7	122
593	Factors Governing Levels and Composition of the Sodium Dodecyl Sulphate-Unextractable Glutenin Polymers During Straight Dough Breadmaking. Journal of Cereal Science, 1999, 29, 129-138.	1.8	40
594	Triticum aestivum Xylanase Inhibitor (TAXI), a New Class of Enzyme Inhibitor Affecting Breadmaking Performance. Journal of Cereal Science, 1999, 30, 39-43.	1.8	129

#	Article	IF	CITATIONS
595	Characterisation of Starch from Durum Wheat (Triticum durum). Starch/Staerke, 1999, 51, 73-80.	1.1	41
596	Impact of Maltodextrins and Antistaling Enzymes on the Differential Scanning Calorimetry Staling Endotherm of Baked Bread Doughs. Journal of Agricultural and Food Chemistry, 1999, 47, 737-741.	2.4	57
597	Fractionationâ^`Reconstitution Experiments Provide Insight into the Role of Endoxylanases in Bread-Making. Journal of Agricultural and Food Chemistry, 1999, 47, 1870-1877.	2.4	145
598	Distribution and Structural Variation of Arabinoxylans in Common Wheat Mill Streams. Journal of Agricultural and Food Chemistry, 1999, 47, 271-275.	2.4	100
599	Variation in the Degree ofd-Xylose Substitution in Water-Extractable European Durum Wheat (TriticumdurumDesf.) Semolina Arabinoxylans. Journal of Agricultural and Food Chemistry, 1999, 47, 1813-1816.	2.4	30
600	Proteolytic Activities in Dormant Rye (Secale cerealeL.) Grain. Journal of Agricultural and Food Chemistry, 1999, 47, 3572-3578.	2.4	37
601	Comparison of Unifactorial and Mixture Approaches for Optimization of Mixing Time and Flour and Water Contents in Breadmaking Formulas. Cereal Chemistry, 1999, 76, 487-490.	1.1	0
602	Pilot-Scale Isolation of Water-Extractable Arabinoxylans from Rye. Cereal Chemistry, 1999, 76, 1-2.	1.1	21
603	Effects of Low Molecular Weight Carbohydrates on Farinograph Characteristics and Staling Endotherms of Wheat Flour-Water Doughs. Cereal Chemistry, 1999, 76, 227-230.	1.1	16
604	Rheological Method for Evaluating Endoproteolytic Enzyme Activity. Cereal Chemistry, 1999, 76, 195-197.	1.1	3
605	Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohydrate Research, 1998, 306, 1-10.	1.1	90
606	Acid hydrolysis of native and annealed wheat, potato and pea starches—DSC melting features and chain length distributions of lintnerised starches. Carbohydrate Research, 1998, 308, 359-371.	1.1	124
607	Complex melting of semi-crystalline chicory (Cichorium intybus L.) root inulin. Carbohydrate Research, 1998, 310, 65-75.	1.1	46
608	Fractionation of maltodextrins by ethanol. Journal of Chromatography A, 1998, 803, 103-109.	1.8	33
609	Simultaneous Isolation of Wheat High Molecular Weight and Low Molecular Weight Glutenin Subunits. Journal of Cereal Science, 1998, 28, 25-32.	1.8	47
610	Specificity of a wheat gluten aspartic proteinase. BBA - Proteins and Proteomics, 1998, 1387, 317-324.	2.1	29
611	Physico-Chemical Properties of Cassava Starch. Starch/Staerke, 1998, 50, 58-64.	1.1	103
612	Moisture stress during growth affects the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) flour. Journal of the Science of Food and Agriculture, 1998, 76, 233-238.	1.7	10

#	Article	IF	CITATIONS
613	Purification, properties and N-terminal amino acid sequence of a wheat gluten aspartic proteinase. Journal of Cereal Science, 1998, 28, 223-232.	1.8	9
614	Protein Composition and Agglomeration Tendency of Gluten Isolated from European Wheats (TriticumaestivumL.) in a Batter System. Journal of Agricultural and Food Chemistry, 1998, 46, 1344-1349.	2.4	12
615	Physical Behavior of Durum Wheat Starch (Triticum durum) during Industrial Pasta Processing. Journal of Agricultural and Food Chemistry, 1998, 46, 2499-2503.	2.4	44
616	Physicochemical and Bread-Making Properties of Low Molecular Weight Wheat-Derived Arabinoxylans. Journal of Agricultural and Food Chemistry, 1998, 46, 4066-4073.	2.4	95
617	Quantitative and Qualitative Study of Arabinogalactan-Peptide during Bread Making. Journal of Agricultural and Food Chemistry, 1998, 46, 5026-5030.	2.4	8
618	Distribution of Carbohydrates in Gluten Fractions Isolated from European Wheats (Triticum) Tj ETQq0 0 0 rgBT /(Overlock 1	0 Tf 50 542 ⁻ 28
619	Effects of Increased High Molecular Weight Glutenin Subunits Content of Flour on Dough Mixing Behavior and Breadmaking. Journal of Agricultural and Food Chemistry, 1998, 46, 4830-4835.	2.4	25
620	Activity of Arabinoxylan Hydrolyzing Enzymes during Mashing with Barley Malt or Barley Malt and Unmalted Wheat. Journal of Agricultural and Food Chemistry, 1998, 46, 4836-4841.	2.4	30
621	Hydrothermal Modifications of Granular Starch, with Retention of the Granular Structure:Â A Review. Journal of Agricultural and Food Chemistry, 1998, 46, 2895-2905.	2.4	496
622	Influence of Botanical Source and Processing on Formation of Resistant Starch Type III. Cereal Chemistry, 1998, 75, 802-804.	1.1	28
623	Partial Purification of a Water-Extractable Rye (Secale cereale) Protein Capable of Improving the Quality of Wheat Bread. Cereal Chemistry, 1998, 75, 403-407.	1.1	5
624	Structural Variation and Levels of Water-Extractable Arabinogalactan-Peptide in European Wheat Flours. Cereal Chemistry, 1998, 75, 815-819.	1.1	52
625	Purification and Characterization of a β-D-Xylosidase and an Endo-Xylanase from Wheat Flour. Plant Physiology, 1997, 113, 377-386.	2.3	66
626	Identification and Characterization of a Novel Arabinoxylanase from Wheat Flour. Plant Physiology, 1997, 115, 1619-1627.	2.3	34
627	Contents and Structural Features of Water-Extractable Arabinogalactan in Wheat Flour Fractions. Journal of Agricultural and Food Chemistry, 1997, 45, 1998-2002.	2.4	112
628	Nuclear Magnetic Resonance and Methylation Analysis-Derived Structural Features of Water-Extractable Arabinoxylans from Barley (Hordeum vulgare L.) Malts. Journal of Agricultural and Food Chemistry, 1997, 45, 2914-2918.	2.4	25
629	Solubilisation and Changes in Molecular Weight Distribution of Arabinoxylans and Protein in Wheat Flours During Bread-Making, and the Effects of Endogenous Arabinoxylan Hydrolysing Enzymes. Journal of Cereal Science, 1997, 26, 55-66.	1.8	70
630	Arabinoxylan and Arabinoxylan Hydrolysing Activities in Barley Malts and Worts Derived from Them. Journal of Cereal Science, 1997, 26, 67-74.	1.8	67

#	Article	IF	CITATIONS
631	Heat-induced Changes in Sodium Dodecyl Sulphate-sedimentation Volume and Functionality of Vital Wheat Gluten. Journal of Cereal Science, 1997, 26, 177-181.	1.8	10
632	On the Presence and Activities of Proteolytic Enzymes in Vital Wheat Gluten. Journal of Cereal Science, 1997, 26, 183-193.	1.8	43
633	Arabinoxylan Solubilization and Inhibition of the Barley Malt Xylanolytic System by Wheat During Mashing with Wheat Wholemeal Adjunct: Evidence for a New Class of Enzyme Inhibitors in Wheat. Journal of the American Society of Brewing Chemists, 1997, 55, 153-156.	0.8	100
634	Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydrate Research, 1997, 297, 347-356.	1.1	95
635	Impact of annealing on the susceptibility of wheat, potato and pea starches to hydrolysis with pancreatin. Carbohydrate Research, 1997, 305, 193-207.	1.1	60
636	Rye (Secale cerealeL.) Arabinoxylans: A Critical Review. Journal of Cereal Science, 1996, 24, 1-14.	1.8	189
637	Evidence for the Non-Glycoprotein Nature of High Molecular Weight Glutenin Subunits of Wheat. Journal of Cereal Science, 1996, 24, 227-239.	1.8	19
638	Effect of hydrothermal treatment on the gelatinisation properties of potato starch as measured by differential scanning calorimetry. Journal of Theoretical Biology, 1996, 47, 1229-1246.	0.8	35
639	Factors Affecting the Visco-Amylograph and Rapid Visco-Analyzer Evaluation of the Impact of Annealing on Starch Pasting Properties. Starch/Staerke, 1996, 48, 266-270.	1.1	45
640	Impact of genotype, crop age and planting season on the breadmaking and gelatinisation properties of cassava (Manihot esculenta Crantz) Flour. Journal of the Science of Food and Agriculture, 1995, 68, 167-174.	1.7	22
641	Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science, 1995, 22, 129-138.	1.8	224
642	Evidence for the presence of arabinoxylan hydrolysing enzymes in European wheat flours. Journal of Cereal Science, 1995, 22, 139-145.	1.8	39
643	Pasting Profiles and Solubility of Native and Cross-Linked Corn Starch inDimethylsulfoxide-Water Mixtures. Journal of Cereal Science, 1995, 22, 251-257.	1.8	30
644	Variation in the degree of D-Xylose substitution in arabinoxylans extracted from a European wheat flour. Journal of Cereal Science, 1995, 22, 73-84.	1.8	64
645	Impact of genotype and crop age on the breadmaking and physico-chemical properties of flour produced from cassava (Manihot esculenta crantz) planted in the dry season. Journal of the Science of Food and Agriculture, 1994, 66, 193-202.	1.7	21
646	UNMALTED CEREAL PRODUCTS FOR BEER BREWING. PART I. THE USE OF HIGH PERCENTAGES OF EXTRUDED OR REGULAR CORN STARCH AND SORGHUM. Journal of the Institute of Brewing, 1989, 95, 271-276.	0.8	19
647	Combined monitoring of UV absorbance and fluorescence intensity as a diagnostic criterion in reversed-phase high-performance liquid chromatographic separations of natural phenolic acids. Journal of Chromatography A, 1989, 467, 149-157.	1.8	6
648	PROTEIN PRECIPITATION DURING WORT BOILING: QUALITY ASPECTS OF DIMINISHED WORT BOILING TIMES OF BREWS PREPARED FROM PROANTHOCYANIDIN-FREE OR REGULAR RAW MATERIALS. Journal of the Institute of Brewing, 1988, 94, 371-374.	0.8	3

#	Article	IF	CITATIONS
649	Malt and Hop Flavanoids in Pilsner Beer. Modern Methods of Plant Analysis, 1988, , 225-240.	0.1	4
650	MALT DIASTATIC ACTIVITY. PART I. THE EBC DETERMINATION OF DIASTATIC POWER: THE UNDERESTIMATION OF THE RELEASE OF REDUCING SUGARS BY IODOMETRIC TITRATION AND THE CHROMOGEN p-HYDROXYBENZOIC ACID HYDRAZIDE AS ALTERNATIVE METHOD. Journal of the Institute of Brewing, 1987, 93, 121-124.	0.8	5
651	MALT DIASTATIC ACTIVITY. PART II. A MODIFIED EBC DIASTATIC POWER ASSAY FOR THE SELECTIVE ESTIMATION OFBET A-AMYLASE ACTIVITY, TIME AND TEMPERATURE DEPENDENCE OF THE RELEASE OF REDUCING SUGARS. Journal of the Institute of Brewing, 1987, 93, 296-301.	0.8	57
652	THE EFFECTS OF GAMMA-IRRADIATION OF PILSNER BEER. Journal of the Institute of Brewing, 1986, 92, 591-593.	0.8	1
653	DIRECT SYNTHESIS OF THE BARLEY PROANTHOCYANIDINS PRODELPHINIDIN B3, PRODELPHINIDIN C2 AND TWO TRIMERIC PROANTHOCYANIDINS WITH A MIXED PRODELPHINIDIN-PROCYANIDIN STEREOCHEMISTRY. Journal of the Institute of Brewing, 1986, 92, 244-249.	0.8	15
654	FLAVOUR AND HAZE STABILITY DIFFERENCES DUE TO HOP AND MALT TANNINS IN ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE AND WITH REGULAR MALT. Journal of the Institute of Brewing, 1985, 91, 302-305.	0.8	10
655	Isolation of quercetin, myricetin, and their respective dihydro-compounds by Sephadex LH-20 chromatography. Journal of Chromatography A, 1985, 324, 495-497.	1.8	7
656	FLAVOUR AND HAZE STABILITY DIFFERENCES DUE TO HOP TANNINS IN ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE MALT. Journal of the Institute of Brewing, 1985, 91, 88-92.	0.8	8
657	Synthesis of condensed tannins. Part 13. The first 2,3-trans-3,4-cis-procyanidins: sequence of units in a †trimer' of mixed stereochemistry. Journal of the Chemical Society Perkin Transactions 1, 1985, , 669-676.	0.9	29
658	A NEW COLOURIMETRIC ASSAY FOR FLAVANOIDS IN PILSNER BEERS. Journal of the Institute of Brewing, 1985, 91, 37-40.	0.8	89
659	STRUCTURE ELUCIDATION OF THREE DIMERIC PROANTHOCYANIDINS ISOLATED FROM A COMMERCIAL BELGIAN PILSNER BEER. Journal of the Institute of Brewing, 1984, 90, 153-161.	0.8	21
660	FLAVOUR AND HAZE STABILITY DIFFERENCES IN UNHOPPED AND HOPPED ALL-MALT PILSNER BEERS BREWED WITH PROANTHOCYANIDIN-FREE AND WITH REGULAR MALT. Journal of the Institute of Brewing, 1984, 90, 67-72.	0.8	28
661	THE INTRINSIC INFLUENCE OF CATECHINS AND PROCYANIDINS ON BEER HAZE FORMATION. Journal of the Institute of Brewing, 1984, 90, 381-384.	0.8	19
662	A mass spectrometric criterion for determining the B- and E-ring hydroxylation pattern in dimeric biflavanoids. Journal of the Chemical Society Chemical Communications, 1983, , 1195.	2.0	1
663	Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. Journal of the Chemical Society Perkin Transactions 1, 1983, , 1711.	0.9	109
664	THE REACTIONS BETWEEN POLYPHENOLS AND ALDEHYDES AND THE INFLUENCE OF ACETALDEHYDE ON HAZE FORMATION IN BEER. Journal of the Institute of Brewing, 1982, 88, 234-243.	0.8	27
665	AN ENZYMATIC ASSAY FOR THE DETERMINATION OF ACETALDEHYDE IN BEERS. Journal of the Institute of Brewing, 1982, 88, 384-386.	0.8	34
666	TRIMERIC AND OLIGOMERIC FLAVANOIDS IN BEER: A JOINT APPLICATION OF SEPHADEX LH-20 AND REVERSED-PHASE GRADIENT ELUTION HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of the Institute of Brewing, 1981, 87, 391-393.	0.8	15

#	Article	IF	CITATIONS
667	Enzymes in Breadmaking. , 0, , 337-364.		16
668	BarleyÎ ² -Glucan and Wheat Arabinoxylan Soluble Fiber Technologies for Health-Promoting Bread Products. , 0, , 157-176.		0
669	Impact of wheat gluten on the denaturation of egg white and whey proteins. Cereal Chemistry, 0, , .	1.1	Ο
670	Rye Constituents and their Impact on Rye Processing. , 0, , 567-592.		2
671	Release of ¹⁴ C″abeled carbon dioxide from ascorbic acid during straight dough wheat bread making. Cereal Chemistry, 0, , .	1.1	0
672	Oxidation of high and low molecular weight glutenin subunits isolated from wheat. Special Publication - Royal Society of Chemistry, 0, , 223-226.	0.0	0
673	Degradation of wheat and rye storage proteins by rye proteolytic enzymes. Special Publication - Royal Society of Chemistry, 0, , 283-286.	0.0	0
674	Significance of high and low molecular weight glutenin subunits for dough extensibility. Special Publication - Royal Society of Chemistry, 0, , 460-463.	0.0	0
675	Induction of Maize Starch Gelatinization and Dissolution at Low Temperature by the Hydrotrope Sodium Salicylate. Biomacromolecules, 0, , .	2.6	1