Rosana Goldbeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595431/publications.pdf

Version: 2024-02-01

58 papers

1,465 citations

331538 21 h-index 35 g-index

60 all docs 60 does citations

60 times ranked

1664 citing authors

#	Article	IF	CITATIONS
1	Enzymatic Hydrolysis Intensification of Lignocellulolytic Enzymes Through Ultrasonic Treatment. Bioenergy Research, 2022, 15, 875-888.	2.2	2
2	Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresource Technology, 2022, 344, 126304.	4.8	76
3	Multi-stage pre-treatment of lignocellulosic biomass for multi-product biorefinery: A review. Sustainable Energy Technologies and Assessments, 2022, 49, 101702.	1.7	21
4	Sustainable valorization of apple waste in a biorefinery: a bibliometric analysis. Biofuels, Bioproducts and Biorefining, 2022, 16, 891-919.	1.9	11
5	New biotechnological opportunities for C5 sugars from lignocellulosic materials. Bioresource Technology Reports, 2022, 17, 100956.	1.5	9
6	Fractionating process of lignocellulosic biomass for the enzymatic production of short chain cello-oligosaccharides. Industrial Crops and Products, 2022, 178, 114671.	2.5	4
7	Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825981.	2.0	5
8	Enzymatic generation of short chain cello-oligosaccharides from Miscanthus using different pretreatments. Bioresource Technology, 2022, 358, 127399.	4.8	4
9	Enzymatic Production of Xylooligosaccharides from Alkali-Solubilized Arabinoxylan from Sugarcane Straw and Coffee Husk. Bioenergy Research, 2021, 14, 739-751.	2.2	21
10	Xylo-oligosaccharide microparticles with synbiotic potential obtained from enzymatic hydrolysis of sugarcane straw. Food Research International, 2021, 140, 109827.	2.9	10
11	Hydrothermal treatment on depolymerization of hemicellulose of mango seed shell for the production of xylooligosaccharides. Carbohydrate Polymers, 2021, 253, 117274.	5.1	54
12	Deconstruction of banana peel for carbohydrate fractionation. Bioprocess and Biosystems Engineering, 2021, 44, 297-306.	1.7	23
13	Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Molecular Biotechnology, 2021, 63, 184-199.	1.3	11
14	Nutritional potential and bioactive compounds of xiqueâ€xique juice: An unconventional food plant from Semiarid Brazilian. Journal of Food Processing and Preservation, 2021, 45, e15265.	0.9	5
15	Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World Journal of Microbiology and Biotechnology, 2021, 37, 73.	1.7	33
16	Multi-omics analysis provides insights into lignocellulosic biomass degradation by Laetiporus sulphureus ATCC 52600. Biotechnology for Biofuels, 2021, 14, 96.	6.2	15
17	Physicochemical characteristics and bioactive compounds of the Xique-xique (Pilosocereus gounellei) cactus from Caatinga Brazilian: are they nutritive and functional?. Journal of Food Measurement and Characterization, 2021, 15, 3284-3297.	1.6	5
18	Production of celloâ€oligosaccharides through the biorefinery concept: A technicalâ€economic and lifeâ€cycle assessment. Biofuels, Bioproducts and Biorefining, 2021, 15, 1763.	1.9	4

#	Article	IF	CITATIONS
19	Evaluating the addition of xylooligosaccharides into alginate-gelatin hydrogels. Food Research International, 2021, 147, 110516.	2.9	11
20	Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Research International, 2020, 128, 108702.	2.9	42
21	Recombinant chimeric enzymes for lignocellulosic biomass hydrolysis. Enzyme and Microbial Technology, 2020, 140, 109647.	1.6	17
22	Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World Journal of Microbiology and Biotechnology, 2020, 36, 166.	1.7	21
23	Application of soluble fibres in the osmotic dehydration of pineapples and reuse of effluent in a beverage fermented by water kefir. LWT - Food Science and Technology, 2020, 132, 109819.	2.5	13
24	Genome sequence of Acremonium strictum AAJ6 strain isolated from the Cerrado biome in Brazil and CAZymes expression in thermotolerant industrial yeast for ethanol production. Process Biochemistry, 2020, 98, 139-150.	1.8	5
25	Optimization of anaerobic fermentation of Actinobacillus succinogenes for increase the succinic acid production. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101718.	1.5	15
26	Xylooligosaccharides production by commercial enzyme mixture from agricultural wastes and their prebiotic and antioxidant potential. Bioactive Carbohydrates and Dietary Fibre, 2020, 24, 100234.	1.5	43
27	Screening of potential endoglucanases, hydrolysis conditions and different sugarcane straws pretreatments for cello-oligosaccharides production. Bioresource Technology, 2020, 316, 123918.	4.8	16
28	Synergic recombinant enzyme association to optimize xylo-oligosaccharides production from agricultural waste. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101747.	1.5	16
29	n-Butanol production by Saccharomyces cerevisiae from protein-rich agro-industrial by-products. Brazilian Journal of Microbiology, 2020, 51, 1655-1664.	0.8	7
30	Alternative technology for intensification of fermentable sugars released from enzymatic hydrolysis of sugarcane bagasse. Biomass Conversion and Biorefinery, 2020, , $1.$	2.9	5
31	Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. Journal of Supercritical Fluids, 2020, 164, 104916.	1.6	18
32	Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT - Food Science and Technology, 2020, 130, 109526.	2.5	35
33	Bamboo as an eco-friendly material for food and biotechnology industries. Current Opinion in Food Science, 2020, 33, 124-130.	4.1	33
34	Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. World Journal of Microbiology and Biotechnology, 2020, 36, 48.	1.7	23
35	Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. Journal of Supercritical Fluids, 2020, 160, 104789.	1.6	38
36	Low-frequency Ultrasound with Short Application Time Improves Cellulase Activity and Reducing Sugars Release. Applied Biochemistry and Biotechnology, 2020, 191, 1042-1055.	1.4	16

3

#	Article	IF	Citations
37	Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnology Letters, 2020, 42, 875-884.	1.1	52
38	Evolutionary Engineering of Two Robust Brazilian Industrial Yeast Strains for Thermotolerance and Second-Generation Biofuels. Industrial Biotechnology, 2020, 16, 91-98.	0.5	11
39	Application of Supercritical CO2 Treatment Enhances Enzymatic Hydrolysis of Sugarcane Bagasse. Bioenergy Research, 2020, 13, 786-796.	2.2	12
40	Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass and Bioenergy, 2020, 141, 105697.	2.9	23
41	Analysis of metabolite profiles of <i>Saccharomyces cerevisiae</i> strains suitable for butanol production. FEMS Microbiology Letters, 2019, 366, .	0.7	3
42	Production of Succinic Acid: Effects of C:N Ratio. Journal of Applied Biotechnology, 2019, 7, 31.	0.1	1
43	Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment. Biomass and Bioenergy, 2019, 122, 481-489.	2.9	13
44	Subcritical water hydrolysis of brewer's spent grains: Selective production of hemicellulosic sugars (C-5 sugars). Journal of Supercritical Fluids, 2019, 145, 19-30.	1.6	64
45	Robustness and Ethanol Production of Industrial Strains of Saccharomyces cerevisiae Using Different Sugarcane Bagasse Hydrolysates. Journal of Applied Biotechnology, 2018, 7, 23.	0.1	3
46	Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass and Bioenergy, 2018, 116, 180-188.	2.9	44
47	Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 36-46.	1.8	38
48	Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnology Letters, 2015, 37, 1455-1462.	1.1	6
49	Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 8513-8525.	1.7	44
50	Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Industrial Crops and Products, 2014, 52, 770-775.	2.5	55
51	Cellulase production from a new strain Acremonium strictum isolated from the Brazilian Biome using different substrates. Bioresource Technology, 2013, 128, 797-803.	4.8	40
52	Screening, characterization, and biocatalytic capacity of lipases producing wild yeasts from Brazil biomes. Food Science and Biotechnology, 2013, 22, 79-87.	1.2	19
53	Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 395-411.	1.2	139
54	Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome. PLoS ONE, 2013, 8, e70014.	1.1	28

#	Article	lF	CITATION
55	Nutritional evaluation of single-cell protein produced by Aphanothece microscopica NÃgeli. Bioresource Technology, 2010, 101, 7107-7111.	4.8	44
56	Production and biochemical profile of the microalgae Aphanothece microscopica NÃgeli submitted to different drying conditions. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1305-1310.	1.8	49
57	The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 2007, 98, 2163-2169.	4.8	88
58	Selection of wild-type S. cerevisiae strains tolerant to the presence of n-butanol from evolutionary engineering., 0,,.		0