Cristina Momblona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595198/publications.pdf

Version: 2024-02-01

55 papers

4,473 citations

249298 26 h-index 51 g-index

56 all docs

56
docs citations

56 times ranked 7412 citing authors

#	Article	IF	CITATIONS
1	C ₆₀ Thin Films in Perovskite Solar Cells: Efficient or Limiting Charge Transport Layer?. ACS Applied Energy Materials, 2022, 5, 1646-1655.	2.5	6
2	Molecular Engineering of Fluoreneâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
3	Molecular Engineering of Thienyl Functionalized Ullazines as Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
4	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22053-22060.	4.0	8
5	Structural and photophysical investigation of single-source evaporation of CsFAPbl ₃ and FAPbl ₃ perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082.	2.7	8
6	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i>	3.1	7
7	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309.	5.2	25
8	Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303.	2.7	10
9	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
10	Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 2100191.	3.1	8
11	Selenopheneâ€Based Holeâ€Transporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1006-1013.	1.3	7
12	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	3.2	7
13	Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	4.0	2
14	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overl	logk 10 Tf	50,222 Td (a
15	Azatruxeneâ€Based, Dumbbellâ€Shaped, Donor–πâ€Bridge–Donor Holeâ€Transporting Materials for Perovsl Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047.	Rite 1.7	15
16	Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640.	1.6	11
17	Application of a Tetraâ€₹PDâ€₹ype Holeâ€₹ransporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	3.1	4
18	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11388.	1.6	5

#	Article	IF	CITATIONS
19	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11266-11272.	7.2	37
20	Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices. Dalton Transactions, 2019, 48, 30-34.	1.6	13
21	Vacuum Deposited Tripleâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703506.	10.2	147
22	Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 214-219.	8.8	91
23	Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[<i>d< i>jthiazole-containing iridium(<scp>iii</scp>) complexes for stable light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 12679-12688.</i>	2.7	15
24	High voltage vacuum-deposited CH ₃ –CH ₃ NH ₃ Pbl ₃ tandem solar cells. Energy and Environmental Science, 2018, 11, 3292-3297.	15.6	98
25	Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 424-430.	8.8	117
26	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
27	Efficient wide band gap double cation – double halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3203-3207.	5.2	28
28	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	10.2	132
29	Highly Stable Red-Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2017, 139, 3237-3248.	6.6	95
30	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect lons. ACS Energy Letters, 2017, 2, 1214-1222.	8.8	826
31	Simple design to achieve red-to-near-infrared emissive cationic Ir(<scp>iii</scp>) emitters and their use in light emitting electrochemical cells. RSC Advances, 2017, 7, 31833-31837.	1.7	30
32	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	10.2	255
33	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
34	Highly Stable and Efficient Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes Bearing Arylazole Ancillary Ligands. Inorganic Chemistry, 2017, 56, 10298-10310.	1.9	65
35	Blue-emitting cationic iridium(iii) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 2017, 5, 9638-9650.	2.7	39
36	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	15.6	102

#	Article	lF	CITATIONS
37	Adsorption of single 1,8-octanedithiol molecules on Cu(100). Physical Chemistry Chemical Physics, 2016, 18, 27521-27528.	1.3	6
38	Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorganic Chemistry, 2016, 55, 10361-10376.	1.9	43
39	[Ir(C^N) ₂ (N^N)] ⁺ emitters containing a naphthalene unit within a linker between the two cyclometallating ligands. Dalton Transactions, 2016, 45, 16379-16392.	1.6	7
40	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	15.6	410
41	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	1.4	19
42	Chiral Iridium(III) Complexes in Light-Emitting Electrochemical Cells: Exploring the Impact of Stereochemistry on the Photophysical Properties and Device Performances. ACS Applied Materials & Los Applied & Los Applied Materials & Los Applied & Los	4.0	44
43	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	5.2	48
44	Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin, 2015, 40, 660-666.	1.7	58
45	Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes. Inorganic Chemistry, 2015, 54, 5907-5914.	1.9	61
46	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	11.1	684
47	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, $2014, 2, .$	2.2	118
48	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	2.2	86
49	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	15.6	266
50	Acetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films. Journal of Physical Chemistry C, 2012, 116, 9142-9150.	1.5	22
51	Isophorone- and pyran-containing NLO-chromophores: a comparative study. Tetrahedron Letters, 2010, 51, 3662-3665.	0.7	18
52	Identifying Key Parameters to Control Perovskite Crystallization in Co-Evaporation., 0,,.		0
53	Zn(li) and Cu(li) Tetrakis(Diarylamine)Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
54	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. , 0 , , .		0

#	Article	IF	CITATIONS
55	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5