Cristina Momblona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8595198/publications.pdf Version: 2024-02-01

5

1 AccurpteOc/deubs Thin Films in Proceedite Solar Cells: Efficient or Limiting Charge Transport Layer? 6.1 6.1 2 Cells: Solar RH, 2022, 6, 1 More neidBased Holeà Cfransporting Materials for Efficient Perovskite Solar 6.8 6 3 Molecular Engineering of Thuore neidBased Holeà Cfransporting Materials for Efficient Perovskite Solar Cells. Solar RH, 2022, 6, . 8.0 8.0 8 4 Trianylamine-Functionalized Inidacely/Capped Bithlophene Hole Transporting Material for Cell Alexis Salar Solar Cells. Solar RH, 2022, 6, . 8.0 8 8 6 Trianylamine-Functionalized Inidacely/Capped Bithlophene Hole Transporting Material for Cell Alexis Solar Cells. ACS Applied Materials Salar Jinterfaces, 2022, 14, 22053-22060, 8.0 8.0 8 6 Trianylamine-Functionalized Inidacely/Capped Bithlophene Hole Transporting Material for Solar	#	Article	IF	CITATIONS
2 Cells. Solar RH, 2022, 6, . 0.38 0 3 Molecular Engineering of Thianyl Functionalized Ullazines as Hole&Cransporting Materials for Perovskite Solar Cells. ACS Applied Materials Kamp; Interfaces, 2022, 14, 22053-22060. 8.0 8 4 Trianylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Materials for Cost Effective Perovskite Solar Cells. ACS Applied Materials Chemistry C, 2022, 10, 10075-10082. 8.0 8 6 Structural and photophysical Investigation of angle-source evaporation of Celf Abit sub. 3 (sub.p perovskite Solar Cells Using C, 01H (J), (c) H(J), (c	1		5.1	6
3 Perovskite Solar Cells. Solar Rif. 2022, 6, . 5-3 5-3 5 4 Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials Kamp; Interfaces, 2022, 14, 22033-22060. 8-0 8 6 Structural and photophysical investigation of single-scurce evaporation of CoS+APbi (sub) 3-(sub) 3-(sub) and . 5-5 8 7 Light Stability Enhancement of Perovskite Solar Cells Using . 5-5 8 7 7 Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309. 10.3 25 8 Subphthalocyanine-based electron-transport materials for perovskite Solar Cells. Journal of Materials Chemistry C, 2021, 9, 1239-1303. 10 11 10 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 5.8 8 11 Selenopheneä-Based Holeä-Ciransporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobitiuorenes as Hole Transports for Perovskite 6.7 7 13 Selenopheneä-Celased Holeä-Ciransporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 14 Cottar methy	2	Molecular Engineering of Fluoreneâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	6
* Cost-Effective Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 22053-22060. 8.0 8 6 Structural and photophysical investigation of single-source evaporation of CsFAPbl(sub) 37(sub): and FAPbl(sub) 37(sub): perovskite Solar Cells Using (51)H7(b); (51)H7(b); (51)H7(b); (51)H7(b); (52)H7(b); (52)H7(b	3		5.8	5
PAPbicsub-3 / sub-> perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082. 5.5 5.5 Light Stability Enhancement of Perovskite Solar Cells Using (.) 114 (.), (.) 114 (.), (.) 214 (.), (.) 244 (.), 36Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 200650. 5.8 7 Pluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309. 10.8 25 Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303. 5.5 10 Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268. 5.1 11 10 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 8, 2.8 7 11 Selenopheneä6Based Holeä6Transporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067. 8.0 2 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyt)limide Ion In Coevaporated 8.0 2.0 2 14 Gradlent band structure: high performance perovskite solar cells using poly(bispheno	4	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22053-22060.	8.0	8
6 ci51Hr(jb,ci52Hr(j	5		5.5	8
7 performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 301-309. 10.3 25 8 Subphthalocyanine-based electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 16298-16303. 5.5 10 9 Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268. 5.1 11 10 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 5.8 8 11 Selenopheneä@Based Holeä@Transporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated patrials, 30 Tf 50,2222 Td (attraction of a Terroskite Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 8.0 2 14 Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overloch, 30 Tf 50,2222 Td (attraction of a Tetraa&CR) and place and cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 15 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. 3.3 11 10 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. 3.3	6	<i>>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> 2Hâ€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5,	5.8	7
8 Materials Chemistry C, 2021, 9, 16298-16303. 5.3 10 9 Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar 5.1 11 10 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 5.8 8 11 SelenopheneäCBased HoleäCTransporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067. 6.7 7 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated pá€'iá€'n Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021,	7		10.3	25
9 Cells: ACS Applied Energy Materials, 2021, 4, 1259-1268. 5.1 11 10 Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 2100191. 5.8 8 11 Selenopheneâ< Based Holeâ	8		5.5	10
10 2100191. 5.8 8 11 SelenopheneäGBased HoleäGTransporting Materials for Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1006-1013. 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite 6.7 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite 6.7 7 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated pa€"ia€"n Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 8.0 2 14 Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overloch 30 Tf 59,4222 Td (at a calculate the Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 15 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientfic Reports, 2020, 10, 10640. 3.3 11 17 Application of a Tetraà6CPDaGTPDaGType Holeà6CTransporting Material Fused by a TrÂfger's Base Core in Perovskite 5.0 4	9	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	5.1	11
11 1006-1013. 2.8 7 12 Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067. 6.7 7 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated pâć"iâć" n Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, , . 8.0 2 14 Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,222 Td (at AzatruxeneâćBased, DumbbellãćEhaped, Donorãć"íčáćEhridgeâć"Donor HoleâćTransporting Materials for Perovskites 15 15 AzatruxeneâćBased, DumbbellãćEhaped, Donorãć"íčáćEhridgeâć"Donor HoleâćTransporting Materials for Perovskites 3.3 11 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640. 3.3 11 17 Application of a Tetraå¢TPDàćType HoleâćTransporting Material Fused by a TrĂger's Base Core in Perovskite 5.0	10	Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition. Solar Rrl, 2021, 5, 2100191.	5.8	8
12 Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067. 6.7 7 13 Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated pà€"i倓n Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, , . 8.0 2 14 Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,222 Td (a Azatruxeneâ€Based, Dumbbellâ€Ehaped, Donor–Ĩ€â€Bridge–Donor Holeâ€Transporting Materials for Perovskite. 15 15 Azatruxeneâ€Based, Dumbbellâ€Ehaped, Donor–Ĩ€â€Bridge–Donor Holeâ€Transporting Materials for Perovskite. 3.3 15 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. 3.3 11 17 Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite 5.0 4	11		2.8	7
13 p–i–n Perovškite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, , . 8.0 2 14 Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,222 Td (a 15 Azatruxeneâ€Based, Dumbbellâ€Shaped, Donor–Ĩ€â€Bridge–Donor Holeâ€Transporting Materials for Perovskite, Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 15 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640. 3.3 11 17 Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite 50 11	12	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	6.7	7
14 10.3 14 15 Azatruxeneâ€Based, Dumbbellâ€6haped, Donor–΀â€Bridge–Donor Holeâ€Transporting Materials for Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 15 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640. 3.3 11 17 Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite 5.0 4	13		8.0	2
Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047. 16 Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640. 3.3 11 17 Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite 5.0 4.0	14	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 10.3	50,222 Td (a
Scientific Reports, 2020, 10, 10640. Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite	15	Azatruxeneâ€Based, Dumbbellâ€5haped, Donor–Ĩ€â€Bridge–Donor Holeâ€Transporting Materials for Perovs Solar Cells. Chemistry - A European Journal, 2020, 26, 11039-11047.	kițe 3.3	15
Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	16	Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640.	3.3	11
	17	Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	5.8	4

Inexpensive Holeâ€Transporting Materials Derived from Tr¶ger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11388.
2.0

#	Article	IF	CITATIONS
19	Inexpensive Holeâ€Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11266-11272.	13.8	37
20	Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices. Dalton Transactions, 2019, 48, 30-34.	3.3	13
21	Vacuum Deposited Tripleâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703506.	19.5	147
22	Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 214-219.	17.4	91
23	Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[<i>d</i>]thiazole-containing iridium(<scp>iii</scp>) complexes for stable light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 12679-12688.	5.5	15
24	High voltage vacuum-deposited CH ₃ NH ₃ PbI ₃ –CH ₃ NH ₃ PbI ₃ tandem solar cells. Energy and Environmental Science, 2018, 11, 3292-3297.	30.8	98
25	Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 424-430.	17.4	117
26	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	6.2	54
27	Efficient wide band gap double cation – double halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3203-3207.	10.3	28
28	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	19.5	132
29	Highly Stable Red-Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2017, 139, 3237-3248.	13.7	95
30	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017, 2, 1214-1222.	17.4	826
31	Simple design to achieve red-to-near-infrared emissive cationic lr(<scp>iii</scp>) emitters and their use in light emitting electrochemical cells. RSC Advances, 2017, 7, 31833-31837.	3.6	30
32	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	19.5	255
33	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	24.0	274
34	Highly Stable and Efficient Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes Bearing Arylazole Ancillary Ligands. Inorganic Chemistry, 2017, 56, 10298-10310.	4.0	65
35	Blue-emitting cationic iridium(iii) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 2017, 5, 9638-9650.	5.5	39
36	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	30.8	102

#	Article	IF	CITATIONS
37	Adsorption of single 1,8-octanedithiol molecules on Cu(100). Physical Chemistry Chemical Physics, 2016, 18, 27521-27528.	2.8	6
38	Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorganic Chemistry, 2016, 55, 10361-10376.	4.0	43
39	[lr(C^N) ₂ (N^N)] ⁺ emitters containing a naphthalene unit within a linker between the two cyclometallating ligands. Dalton Transactions, 2016, 45, 16379-16392.	3.3	7
40	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	30.8	410
41	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	2.6	19
42	Chiral Iridium(III) Complexes in Light-Emitting Electrochemical Cells: Exploring the Impact of Stereochemistry on the Photophysical Properties and Device Performances. ACS Applied Materials & Interfaces, 2016, 8, 33907-33915.	8.0	44
43	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	10.3	48
44	Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin, 2015, 40, 660-666.	3.5	58
45	Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes. Inorganic Chemistry, 2015, 54, 5907-5914.	4.0	61
46	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	21.0	684
47	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, 2014, 2, .	5.1	118
48	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	5.1	86
49	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	30.8	266
50	Acetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films. Journal of Physical Chemistry C, 2012, 116, 9142-9150.	3.1	22
51	Isophorone- and pyran-containing NLO-chromophores: a comparative study. Tetrahedron Letters, 2010, 51, 3662-3665.	1.4	18
52	Identifying Key Parameters to Control Perovskite Crystallization in Co-Evaporation. , 0, , .		0
53	Zn(li) and Cu(li) Tetrakis(Diarylamine)Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	Ο
54	Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells. , 0, , .		0

#	Article	IF	CITATIONS
55	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	3.6	5