Soo-young Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859504/publications.pdf

Version: 2024-02-01

192 papers 6,237 citations

71102 41 h-index 70 g-index

194 all docs

194 docs citations

times ranked

194

7637 citing authors

#	Article	IF	CITATIONS
1	Fluorinated ethylene–propylene/graphite composites reinforced with silicon carbide for the bipolar plates of fuel cells. International Journal of Hydrogen Energy, 2022, 47, 4090-4099.	7.1	7
2	Effects of network structure of main-chain liquid crystal elastomer on its thermal actuation performance. Journal of Industrial and Engineering Chemistry, 2022, , .	5.8	1
3	One-step fabrication of pH-responsive microcapsules with aqueous cargo using aqueous two-phase system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129506.	4.7	3
4	Functional solid-state photonic droplets with interpenetrating polymer network and their applications to biosensors. Sensors and Actuators B: Chemical, 2021, 329, 129165.	7.8	15
5	Poly(acrylic acid) Hydrogel Microspheres for a Metal-Ion Sensor. ACS Sensors, 2021, 6, 1039-1048.	7.8	17
6	Synthesis of gelation-induced emissive, o-phenylazonaphthol-based organogel and its responsiveness to fluoride anion. Tetrahedron, 2021, 81, 131895.	1.9	5
7	Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide. Cellulose, 2021, 28, 5401.	4.9	4
8	Mechano-Actuated Light-Responsive Main-Chain Liquid Crystal Elastomers. Macromolecules, 2021, 54, 5397-5409.	4.8	19
9	Preparation of uniformly sized interpenetrating polymer network polyelectrolyte hydrogel droplets from a solid-state liquid crystal shell. Journal of Industrial and Engineering Chemistry, 2021, 99, 235-245.	5 . 8	11
10	Revised Korean Antiviral Guideline Reduces the Hepatitis B-related Hepatocellular Carcinoma Risk in Cirrhotic Patients. Journal of Korean Medical Science, 2021, 36, e105.	2.5	3
11	Pyrene-based Polymer Surfactant for Dispersion of CNT in the PVDF/CNT Nanocomposite. Porrime, 2021, 45, 803-808.	0.2	O
12	Transparent UV-blocking photonic film based on reflection of cholesteric liquid crystals. Journal of Molecular Liquids, 2021, 344, 117739.	4.9	6
13	Photonic Cholesteric Liquid-Crystal Elastomers with Reprogrammable Helical Pitch and Handedness. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59275-59287.	8.0	30
14	Optical anticounterfeiting photonic bilayer film based on handedness of solid-state helicoidal structure. RSC Advances, 2021, 11, 37498-37503.	3.6	6
15	Optical Multisensor Array with Functionalized Photonic Droplets by an Interpenetrating Polymer Network for Human Blood Analysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47342-47354.	8.0	21
16	Sweat-Based Noninvasive Skin-Patchable Urea Biosensors with Photonic Interpenetrating Polymer Network Films Integrated into PDMS Chips. ACS Sensors, 2020, 5, 3988-3998.	7.8	34
17	General method for the production of hydrogel droplets from uniformly sized smart shell membranes. Polymer Chemistry, 2020, 11, 5444-5454.	3.9	4
18	Poly(phenylene sulfide) Graphite Composites with Graphite Nanoplatelets as a Secondary Filler for Bipolar Plates in Fuel Cell Applications. Macromolecular Research, 2020, 28, 1010-1016.	2.4	14

#	Article	IF	CITATIONS
19	Optical glucose biosensor based on photonic interpenetrating polymer network with solid-state cholesteric liquid crystal and cationic polyelectrolyte. Sensors and Actuators B: Chemical, 2020, 316, 128099.	7.8	35
20	Changes in Characteristics of Patients with Liver Cirrhosis Visiting a Tertiary Hospital over 15 Years: a Retrospective Multi-Center Study in Korea. Journal of Korean Medical Science, 2020, 35, e233.	2.5	7
21	Molecular Design Approach for Directed Alignment of Conjugated Polymers. Macromolecules, 2019, 52, 6485-6494.	4.8	6
22	High-Performance Fluorinated Ethylene-Propylene/Graphite Composites Interconnected with Single-Walled Carbon Nanotubes. Macromolecular Research, 2019, 27, 1161-1166.	2.4	10
23	Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal mesogens. Sensors and Actuators B: Chemical, 2019, 298, 126894.	7.8	39
24	Patterned Photonic Array Based on an Intertwined Polymer Network Functionalized with a Nonenzymatic Moiety for the Visual Detection of Glucose. ACS Applied Materials & Interfaces, 2019, 11, 37434-37441.	8.0	18
25	Synthesis of Bioresorbable Poly(Lactic-co-Glycolic Acid)s Through Direct Polycondensation: An Economical Substitute for the Synthesis of Polyglactin via ROP of Lactide and Glycolide. Fibers and Polymers, 2019, 20, 887-895.	2.1	6
26	Optical Properties and Applications of Photonic Shells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20350-20359.	8.0	18
27	Liquid-crystal-based biosensor for detecting Ca2+ in human saliva. Journal of Industrial and Engineering Chemistry, 2019, 74, 193-198.	5.8	14
28	Poly(phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation. Korean Journal of Chemical Engineering, 2019, 36, 2133-2142.	2.7	11
29	Carbon-dot-based ratiometric fluorescence glucose biosensor. Sensors and Actuators B: Chemical, 2019, 282, 719-729.	7.8	96
30	Biosensor Array of Interpenetrating Polymer Network with Photonic Film Templated from Reactive Cholesteric Liquid Crystal and Enzymeâ€Immobilized Hydrogel Polymer. Advanced Functional Materials, 2018, 28, 1707562.	14.9	91
31	Cholesteric Liquid Crystals: Through the Spherical Lookingâ€Glass: Asymmetry Enables Multicolored Internal Reflection in Cholesteric Liquid Crystal Shells (Advanced Optical Materials 1/2018). Advanced Optical Materials, 2018, 6, 1870002.	7.3	0
32	Through the Spherical Lookingâ€Glass: Asymmetry Enables Multicolored Internal Reflection in Cholesteric Liquid Crystal Shells. Advanced Optical Materials, 2018, 6, 1700923.	7.3	44
33	Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing. Sensors and Actuators B: Chemical, 2018, 257, 579-585.	7.8	35
34	Indirect fabrication of versatile 3D microfluidic device by a rotating plate combined 3D printing system. RSC Advances, 2018, 8, 37693-37699.	3.6	2
35	Label-Free Detection of Dopamine based on Photoluminescence of Boronic Acid-Functionalized Carbon Dots in Solid-State Polyethylene Glycol Thin Film. Macromolecular Research, 2018, 26, 1150-1159.	2.4	8
36	In vitro Dual Detection of GNPs Conjugated Rabbit IgG Using Anti-IgG Anchored Calcein Green Fluorescent LC Microdroplets. IEEE Sensors Journal, 2018, , 1-1.	4.7	1

3

#	Article	IF	Citations
37	Label- and enzyme-free detection of glucose by boronic acid-coupled poly(styrene-b-acrylic acid) at liquid crystal/aqueous interfaces. Analytica Chimica Acta, 2018, 1032, 122-129.	5.4	13
38	In vitro detection of allergen sensitized basophils by HSA-DNP antigen-anchored liquid crystal microdroplets. Analytical Biochemistry, 2018, 558, 1-11.	2.4	5
39	Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity. Carbohydrate Polymers, 2018, 196, 168-175.	10.2	22
40	Smart Fluorescent Hydrogel Glucose Biosensing Microdroplets with Dual-Mode Fluorescence Quenching and Size Reduction. ACS Applied Materials & Interfaces, 2018, 10, 30172-30179.	8.0	50
41	Photonic Springâ€Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics. Advanced Optical Materials, 2017, 5, 1700243.	7.3	37
42	Smart molecular-spring photonic droplets. Materials Horizons, 2017, 4, 633-640.	12.2	31
43	Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture. Sensors and Actuators B: Chemical, 2017, 251, 658-666.	7.8	13
44	Rapid transformation of transparent conducting films into superhydrophobic conductive films. RSC Advances, 2017, 7, 17173-17177.	3.6	0
45	Slide cover glass immobilized liquid crystal microdroplets for sensitive detection of an IgG antigen. RSC Advances, 2017, 7, 37675-37688.	3.6	16
46	Photonic Shells: Photonic Spring‣ike Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics (Advanced Optical Materials 13/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
47	Realization of transparent conducting networks with high uniformity by spray deposition on flexible substrates. Thin Solid Films, 2017, 638, 367-374.	1.8	9
48	Preparation of Poly(styrene)- $\langle i \rangle b \langle j \rangle$ -poly(acrylic acid)-Coupled Carbon Dots and Their Applications. ACS Applied Materials & Early (1) and Early (2) acrylic acid)-24178.	8.0	17
49	Polypyrrole nanocomposite with water-dispersible graphene. Macromolecular Research, 2017, 25, 335-343.	2.4	3
50	pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sensors and Actuators B: Chemical, 2017, 241, 636-643.	7.8	67
51	Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach. Biosensors and Bioelectronics, 2017, 87, 976-983.	10.1	19
52	Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide. Nanotechnology, 2017, 28, 465706.	2.6	5
53	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7116-7120.	13.8	41
54	Carbon nanotube-induced migration of silver nanowire networks into plastic substrates via Joule heating for high stability. RSC Advances, 2016, 6, 86395-86400.	3.6	7

#	Article	IF	CITATIONS
55	Liquid crystal-Based DNA biosensor for myricetin detection. Sensors and Actuators B: Chemical, 2016, 233, 559-565.	7.8	44
56	A carbon dot–hemoglobin complex-based biosensor for cholesterol detection. Green Chemistry, 2016, 18, 4245-4253.	9.0	114
57	Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Di-Block Chains. ACS Applied Ma	8.0	24
58	Polyelectrolytes functionalized nematic liquid crystal-based biosensors: An overview. TrAC - Trends in Analytical Chemistry, 2016, 83, 80-94.	11.4	21
59	In vitro detection of human breast cancer cells (SK-BR3) using herceptin-conjugated liquid crystal microdroplets as a sensing platform. Biomaterials Science, 2016, 4, 1473-1484.	5.4	7
60	Cholesteric Liquid Crystal Droplets for Biosensors. ACS Applied Materials & Droplets, 2016, 8, 26407-26417.	8.0	130
61	A liquid-crystal-based DNA biosensor for pathogen detection. Scientific Reports, 2016, 6, 22676.	3.3	78
62	Polypropylene nanocomposite with polypropylene-grafted graphene. Macromolecular Research, 2016, 24, 508-514.	2.4	14
63	Enhancing light-extraction efficiency of OLEDs with high- and low-refractive-index organic–inorganic hybrid materials. Organic Electronics, 2016, 36, 103-112.	2.6	23
64	pH-Responsive liquid crystal double emulsion droplets prepared using microfluidics. RSC Advances, 2016, 6, 55976-55983.	3.6	22
65	Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Materials Science and Engineering C, 2016, 61, 492-498.	7.3	42
66	Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. Journal of Materials Chemistry B, 2016, 4, 704-715.	5.8	30
67	Physical force-sensitive touch responses in liquid crystal-gated-organic field-effect transistors with polymer dipole control layers. Organic Electronics, 2016, 28, 184-188.	2.6	6
68	Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets. Nanoscale, 2016, 8, 6693-6699.	5.6	4
69	Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications. Polymer International, 2015, 64, 1660-1666.	3.1	31
70	Preparation of water-dispersible graphene using N-methylmorpholine N-oxide monohydrate and its application for the preparation of nanocomposites using PEDOT. Journal of Materials Chemistry C, 2015, 3, 7105-7117.	5.5	6
71	Liquid crystal droplets functionalized with charged surfactant and polyelectrolyte for non-specific protein detection. RSC Advances, 2015, 5, 97264-97271.	3.6	13
72	Specific detection of avidin–biotin binding using liquid crystal droplets. Colloids and Surfaces B: Biointerfaces, 2015, 127, 241-246.	5.0	47

#	Article	IF	CITATIONS
73	Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes. Biosensors and Bioelectronics, 2015, 68, 404-412.	10.1	37
74	TiO ₂ /amidoxime-modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium. Desalination and Water Treatment, 2015, 54, 3146-3151.	1.0	29
75	Synthesis of titania- and silica-polymer hybrid materials and their application as refractive index-matched layers in touch screens. Optical Materials Express, 2015, 5, 690.	3.0	11
76	Liquid crystals: emerging materials for use in real-time detection applications. Journal of Materials Chemistry C, 2015, 3, 9038-9047.	5.5	68
77	Glucose biosensor based on GOx/HRP bienzyme at liquid–crystal/aqueous interface. Journal of Colloid and Interface Science, 2015, 457, 281-288.	9.4	31
78	Ultrasensitive tactile sensors based on planar liquid crystal-gated-organic field-effect transistors with polymeric dipole control layers. RSC Advances, 2015, 5, 56904-56907.	3.6	6
79	Bienzyme liquid-crystal-based cholesterol biosensor. Sensors and Actuators B: Chemical, 2015, 220, 508-515.	7.8	36
80	Synthesis, characterization, and physical properties of a poly(acrylamide-co-4-cyanobiphenyl-4′-oxyundecylacrylate). New Journal of Chemistry, 2015, 39, 220-223.	2.8	2
81	Self-assembly of a liquid crystal ABA triblock copolymer in a B-selective organic solvent. Polymer, 2015, 66, 94-99.	3.8	6
82	Ultraviolet-assisted reduction of BBL/graphene nanocomposite. Macromolecular Research, 2015, 23, 428-435.	2.4	2
83	Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Research Letters, 2015, 10, 5.	5.7	16
84	The role of ligand–receptor interactions in visual detection of HepG2 cells using a liquid crystal microdroplet-based biosensor. Journal of Materials Chemistry B, 2015, 3, 8659-8669.	5.8	20
85	Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers. Fibers and Polymers, 2015, 16, 1870-1875.	2.1	24
86	Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	7
87	Crystal structure evolution of nylon 6/GO graft nanocomposites during heat treatments and cold drawing. Polymer, 2015, 78, 111-119.	3.8	7
88	The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included \hat{l}^2 -cyclodextrin aqueous solution. Analytica Chimica Acta, 2015, 893, 101-107.	5.4	22
89	Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells. BioMed Research International, 2014, 2014, 1-9.	1.9	15
90	Touch sensors based on planar liquid crystal-gated-organic field-effect transistors. AIP Advances, 2014, 4, 097109.	1.3	6

#	Article	IF	Citations
91	Flexible OLED encapsulated with gas barrier film and adhesive gasket. Synthetic Metals, 2014, 193, 77-80.	3.9	38
92	Preparation and characterization of nylon 6 compounds using the nylon 6-grafted GO. Macromolecular Research, 2014, 22, 257-263.	2.4	17
93	Facile in-situ preparation of polyaniline/graphene nanocomposites using methanesulfonic acid. Polymer, 2014, 55, 2928-2935.	3.8	6
94	Poly(acrylic acid)-Grafted Graphene Oxide as an Intracellular Protein Carrier. Langmuir, 2014, 30, 402-409.	3.5	56
95	Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4′-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)). Colloids and Surfaces B: Biointerfaces, 2014, 121, 400-408.	5.0	33
96	Liquid crystal-based biosensors using a strong polyelectrolyte-containing block copolymer, poly(4-cyanobiphenyl-4′-oxyundecylacrylate)-b-poly(sodium styrene sulfonate). Macromolecular Research, 2014, 22, 888-894.	2.4	16
97	A liquid crystal polymer based single layer chemo-responsive actuator. Chemical Communications, 2014, 50, 2030.	4.1	27
98	Shape-Responsive Actuator from a Single Layer of a Liquid-Crystal Polymer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18048-18054.	8.0	38
99	Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Advances, 2014, 4, 40617-40625.	3.6	22
100	Folate Ligand Anchored Liquid Crystal Microdroplets Emulsion for <i>in Vitro</i> Detection of KB Cancer Cells. Langmuir, 2014, 30, 10668-10677.	3.5	57
101	Real-time liquid crystal-based biosensor for urea detection. Analytical Methods, 2014, 6, 5753-5759.	2.7	26
102	Self-assembly of a liquid crystal ABA triblock copolymer in a nematic liquid crystal solvent. Polymer, 2014, 55, 3995-4002.	3.8	9
103	A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications. Lab on A Chip, 2014, 14, 4270-4276.	6.0	19
104	Fabrication of temperature- and pH-sensitive liquid-crystal droplets with PNIPAM-b-LCP and SDS coatings by microfluidics. Journal of Materials Chemistry B, 2014, 2, 4922-4928.	5.8	31
105	Preparation of QP4VP-b-LCP liquid crystal block copolymer and its application as a biosensor. Analytical and Bioanalytical Chemistry, 2014, 406, 5369-5378.	3.7	23
106	Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 115, 37-45.	5.0	63
107	Preparation, chemical, and thermal characterization of nylon 4/6 copolymers by anionic ring opening polymerization of 2-Pyrrolidone and Îμ-Caprolactam. Fibers and Polymers, 2014, 15, 899-907.	2.1	13
108	Liquid Crystal-Based Proton Sensitive Glucose Biosensor. Analytical Chemistry, 2014, 86, 1493-1501.	6. 5	84

#	Article	IF	Citations
109	Cybotactic nematic phase in main-chain polyesters with bent-core mesogens. Polymer, 2014, 55, 1931-1939.	3.8	5
110	General Liquid-crystal droplets produced by microfluidics for urea detection. Sensors and Actuators B: Chemical, 2014, 202, 516-522.	7.8	58
111	Effect of hydroiodic acid-reduction of graphene oxide on electrical properties of polybenzimidazobenzophenanthroline/graphene oxide nanocomposites. Macromolecular Research, 2013, 21, 1254-1262.	2.4	6
112	Protein detection using aqueous/LC interfaces decorated with a novel poly(N-isopropyl acrylamide) block liquid crystalline polymer. RSC Advances, 2013, 3, 17930.	3.6	2
113	pH-Sensitive nanocargo based on smart polymer functionalized graphene oxide for site-specific drug delivery. Physical Chemistry Chemical Physics, 2013, 15, 5176.	2.8	74
114	In-situ preparation of multi-walled carbon nanotube (MWNT)/cellulose nanocomposites and their physical properties. Fibers and Polymers, 2013, 14, 566-570.	2.1	7
115	Glucose Sensor using Liquid-Crystal Droplets Made by Microfluidics. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13135-13139.	8.0	107
116	Preparation of Asymmetric Porous Janus Particles Using Microfluidics and Directional UV Curing. Particle and Particle Systems Characterization, 2013, 30, 981-988.	2.3	13
117	Fabrication and Characterization of Collagen-Immobilized Porous PHBV/HA Nanocomposite Scaffolds for Bone Tissue Engineering. Journal of Nanomaterials, 2012, 2012, 1-11.	2.7	23
118	Uniaxial Tensile Deformation of Poly($\hat{l}\mu$ -caprolactone) Studied with SAXS and WAXS Techniques Using Synchrotron Radiation. Macromolecules, 2012, 45, 8752-8759.	4.8	71
119	Preparation and structure of nylon 4/6 random-copolymer nanofibers. Macromolecular Research, 2012, 20, 810-815.	2.4	9
120	Self-Assembly of dPS-Liquid Crystalline Diblock Copolymer in a Nematic Liquid Crystal Solvent. Macromolecules, 2012, 45, 6168-6175.	4.8	11
121	Protein detection using aqueous/LC interfaces decorated with a novel polyacrylic acid block liquid crystalline polymer. Soft Matter, 2012, 8, 198-203.	2.7	50
122	An in-situ simultaneous SAXS and WAXS survey of PEBAX \hat{A}^{\otimes} nanocomposites reinforced with organoclay and POSS during uniaxial deformation. Polymer, 2012, 53, 3360-3367.	3.8	31
123	Effect of Chemical Modification of Graphene on Mechanical, Electrical, and Thermal Properties of Polyimide/Graphene Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4623-4630.	8.0	181
124	Chemically modified graphene oxide/polybenzimidazobenzophenanthroline nanocomposites with improved electrical conductivity. Polymer, 2012, 53, 3937-3945.	3.8	22
125	Configuration change of liquid crystal microdroplets coated with a novel polyacrylic acid block liquid crystalline polymer by protein adsorption. Lab on A Chip, 2012, 12, 4553.	6.0	41
126	Effect of nanoclay on the thermal, mechanical, and crystallization behavior of nanofiber webs of nylonâ€6. Polymer Composites, 2012, 33, 192-195.	4.6	18

#	Article	IF	Citations
127	Structural evolution of poly(ether-b-amide12) elastomers during the uniaxial stretching: An in situ wide-angle X-ray scattering study. Macromolecular Research, 2012, 20, 725-731.	2.4	26
128	Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon, 2012, 50, 2994-3000.	10.3	275
129	Study on the Improvement of Light Transmittance of Polyester Film. Porrime, 2012, 36, 662-667.	0.2	0
130	Synthesis and micellization of a novel diblock copolymer of poly(N-isopropylacrylamide)-b-SGLCP and its application in stability of 5CB droplets in aqueous medium. Soft Matter, 2011, 7, 780-787.	2.7	19
131	Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP. Lab on A Chip, 2011, 11, 3493.	6.0	70
132	<i>In Vitro</i> Anti-Bacterial and Cytotoxic Properties of Silver-Containing Poly(L-lactide-co-glycolide) Nanofibrous Scaffolds. Journal of Nanoscience and Nanotechnology, 2011, 11, 61-65.	0.9	24
133	Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI. Polymer Bulletin, 2011, 67, 187-198.	3.3	44
134	Adsorption of bromo-phenol blue from an aqueous solution onto thermally modified granular charcoal. Chemical Engineering Research and Design, 2011, 89, 23-28.	5.6	21
135	Preparation of hydrazineâ€modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. Journal of Applied Polymer Science, 2011, 121, 869-873.	2.6	46
136	Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydrate Polymers, 2011, 86, 903-909.	10.2	90
137	Structural evolution of graphite oxide during heat treatment. Chemical Physics Letters, 2011, 511, 110-115.	2.6	34
138	A novel route for the preparation of thermally sensitive core-shell magnetic nanoparticles. Polymer, 2011, 52, 91-97.	3.8	31
139	Fabrication and Performance of Flexible OLEDs with AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film. Molecular Crystals and Liquid Crystals, 2011, 550, 172-182.	0.9	1
140	Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrile nanofibers. Journal of Polymer Research, 2010, 17, 535-540.	2.4	41
141	Preparation and properties of the singleâ€walled carbon nanotube/cellulose nanocomposites using ⟨i>N⟨/i>â€methylmorpholineâ€⟨i>N⟨/i>â€oxide monohydrate. Journal of Applied Polymer Science, 2010, 117, 3588-3594.	2.6	16
142	EFFECTS OF THE REDUCING AGENTS ON MORPHOLOGIES OF GOLD NANOPARTICLES IN POLY(STYRENE-B-4-VINYLPYRIDINE) MICELLES. International Journal of Modern Physics B, 2010, 24, 3197-3202.	2.0	2
143	pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers. Soft Matter, 2010, 6, 1964.	2.7	55
144	Deposition of silver nanoparticles on single wall carbon nanotubes via a self assembled block copolymer micelles. Reactive and Functional Polymers, 2009, 69, 552-557.	4.1	14

#	Article	IF	Citations
145	In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers. Nanoscale Research Letters, 2009, 4, 39-46.	5.7	57
146	Structures of the cylindrical and vesicular micelles of an P4VP-longer asymmetric PS-b-P4VP. Macromolecular Research, 2009, 17, 553-556.	2.4	5
147	Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science, 2009, 328, 90-96.	8.2	380
148	Self-Assembly of Coil/Liquid-Crystalline Diblock Copolymers in a Liquid Crystal Solvent. Macromolecules, 2009, 42, 299-307.	4.8	9
149	Fluorescence Emission of Disperse Red 1 in PS- <i>b</i> -P4VP Micelles Controlled by a Toluene/Ethanol Solvent Mixture. Langmuir, 2009, 25, 13426-13431.	3.5	8
150	The effects of the selectivity of the toluene/ethanol mixture on the micellar and the ordered structures of an asymmetric poly(styrene-b-4-vinylpyridine). Polymer, 2008, 49, 3327-3334.	3.8	9
151	Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. Journal of Membrane Science, 2008, 322, 400-405.	8.2	417
152	Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chemical Communications, 2008, , 2364.	4.1	139
153	Preparation, swelling and electro-mechano-chemical behaviors of a gelatin–chitosan blend membrane. Soft Matter, 2008, 4, 485.	2.7	43
154	Micellar Structures of Poly(styrene-b-4-vinylpyridine)s in THF/Toluene Mixtures and Their Functionalization with Gold. Langmuir, 2008, 24, 9279-9285.	3.5	19
155	A Study on the Selectivity of Toluene/Ethanol Mixtures on the Micellar and Ordered Structures of Poly(styrene-b-4-vinylpyridine) Using Small-angle X-ray Scattering, Generalized Indirect Fourier Transform, and Transmission Electron Microscopy. Macromolecules, 2007, 40, 3757-3764.	4.8	38
156	The Preparation and Characterization of the Cross-Linked Spherical, Cylindrical, and Vesicular Micelles of Poly(styrene-b-isoprene) Diblock Copolymers. Langmuir, 2007, 23, 6788-6795.	3. 5	12
157	Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. Journal of Applied Polymer Science, 2007, 104, 1957-1963.	2.6	108
158	Preparation of multiwalled carbon nanotube/nylonâ€6 nanocomposites by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2007, 106, 3729-3735.	2.6	91
159	Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2007, 124, 517-528.	7.8	72
160	Study of the Ordered Structures of Poly(styrene-b-vinyl4pyridine) in a Solution State by Using Small-Angle X-ray Scattering and Generalized Indirect Fourier Transform. Langmuir, 2006, 22, 11369-11375.	3.5	14
161	The synthesis, characterization, and crystal structures of poly(2,6-naphthalenebenzobisoxazole) and poly(1,5-naphthalenebenzobisoxazole). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1948-1957.	2.1	4
162	Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47, 8019-8025.	3.8	172

#	Article	IF	CITATIONS
163	Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in mild and viscous polymeric acid. Polymer, 2006, 47, 1132-1140.	3.8	66
164	The effect of multi-walled carbon nanotubes on the molecular orientation of poly(vinyl alcohol) in drawn composite films. Fibers and Polymers, 2006, 7, 323-327.	2.1	21
165	Preparation and properties of a poly(2-cyano-1,4-phenylene terephthalamide)/layered silicate nanocomposite. Journal of Applied Polymer Science, 2006, 102, 640-645.	2.6	7
166	THE STRUCTURAL DEVELOPMENT OF NYLON6/LAYERED SILICATE NANOCOMPOSITE DURING ZONE-DRAWING. International Journal of Modern Physics B, 2006, 20, 4577-4582.	2.0	1
167	Unusual thermal relaxation of viscosity-and-shear-induced strain in poly(ether-ketones) synthesized in highly viscous polyphosphoric acid/P2O5 medium. Polymer, 2005, 46, 1543-1552.	3.8	36
168	The crystal structure of poly(2,6-naphthalenebenzobisthiazole). Polymer, 2005, 46, 5630-5636.	3.8	2
169	Thermal transitions of the drawn film of a nylon 6/layered silicate nanocomposite. Macromolecular Research, 2005, 13, 156-161.	2.4	12
170	Crystal Structure of Poly(1,5-naphthalenebenzobisthiazole). Macromolecules, 2005, 38, 1711-1716.	4.8	5
171	Three-Dimensional Structure of the Zone-Drawn Film of the Nylon-6/Layered Silicate Nanocomposites. Macromolecules, 2005, 38, 1729-1735.	4.8	43
172	Crystal Structure of Poly(2-cyano-1,4-phenylene terephthalamide). Macromolecules, 2005, 38, 3713-3718.	4.8	12
173	Effects of the alkyl side-chain length on the structures of poly[oxy(N-alkylsulfonylmethyl)ethylene]s. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1868-1874.	2.1	12
174	Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a wet spinning system: The effect of the concentration of the crosslinking agent epichlorohydrin. Journal of Applied Polymer Science, 2004, 92, 2054-2062.	2.6	63
175	Photolithographic process of microcapsule sheet for electrophoretic display. Materials Science and Engineering C, 2004, 24, 143-146.	7. 3	8
176	Structure of poly (p-phenylenebenzobisoxazole) (PBZO) and poly (p-phenylenebenzobisthiazole) (PBZT) for proton exchange membranes (PEMs) in fuel cells. Polymer, 2004, 45, 49-59.	3.8	10
177	Synthesis and dipole–dipole interaction-induced mesomorphic behavior of poly(oxyethylene)s containing (n-octylsulfonyl)alkylthiomethyl or (n-octylsulfonyl)alkylsulfonylmethyl side groups. Polymer, 2003, 44, 7413-7425.	3.8	20
178	Packing Studies on Poly(di-n-alkylsilylenemethylene)s. Macromolecular Rapid Communications, 2003, 24, 793-798.	3.9	0
179	Synthesis of comb-type polycarbosilanes via nucleophilic substitution reactions on the main-chain silicon atoms. Journal of Polymer Science Part A, 2003, 41, 984-997.	2.3	7
180	Synthesis of Photocrosslinkable Polymers Using Abietic Acid and Their Characterization. Polymer Journal, 2003, 35, 450-454.	2.7	9

#	Article	IF	CITATIONS
181	Structures of Side Chain Liquid Crystalline Poly(silylenemethylene)s. Macromolecules, 2002, 35, 2776-2783.	4.8	26
182	A phenomenological model for linear viscoelasticity of monodisperse linear polymers. Macromolecular Research, 2002, 10, 266-272.	2.4	3
183	The structures of poly(oxyethylene)s having sulfone groups in the side chains. Polymer, 2002, 43, 177-183.	3.8	18
184	The structure of a cyanobiphenyl side chain liquid crystalline poly(silylenemethylene). Polymer, 2002, 43, 5169-5174.	3.8	9
185	Synthesis and mesomorphic properties of poly(oxyethylene)s containing alkylsulfonylmethyl or alkylthiomethyl side groups. Polymer, 2002, 43, 7051-7061.	3.8	19
186	Synthesis and Mesomorphic Properties of Poly(oxyethylene) with [(6-Heptylsulfonyl)hexylthio]methyl Side Groups. Macromolecular Rapid Communications, 2001, 22, 815-819.	3.9	14
187	The structure of poly(di-n-propylsilylenemethylene). Polymer, 2001, 42, 4253-4260.	3.8	6
188	The structure of poly(cyano-p-xylylene). Polymer, 2000, 41, 2937-2945.	3.8	8
189	A Three-Dimensionally Oriented Texture for Poly(α,α,αâ€~,αâ€~-tetrafluoro-p-xylylene). Macromolecules, 1999, 3 7845-7852.	2 _{4.8}	14
190	Structure of a Ring-Containing Fluoropolymer. Macromolecules, 1997, 30, 6814-6818.	4.8	4
191	Miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends by transesterification. Journal of Polymer Science Part A, 1996, 34, 2841-2850.	2.3	69
192	Adsorption of iron (III) onto chemically modified polyacrylonitrile nanofibers from aqueous solution and used as photocatalyst for the degradation of bromophenol blue dye., 0, 144, 292-299.		1