Michael J Mclaughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 2008, 27, 1825-1851.	2.2	2,370
2	The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Applied Spectroscopy Reviews, 2014, 49, 139-186.	3.4	559
3	Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts of Chemical Research, 2013, 46, 854-862.	7.6	520
4	Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environmental Toxicology and Chemistry, 2018, 37, 2029-2063.	2.2	429
5	Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards. Environmental Toxicology and Chemistry, 2009, 28, 1633-1642.	2.2	333
6	Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2002, 53, 535-543.	2.4	328
7	The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant and Soil, 2011, 349, 69-87.	1.8	284
8	The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment, 2012, 426, 196-210.	3.9	211
9	An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 2005, 138, 34-45.	3.7	208
10	Long-Term Aging of Copper Added to Soils. Environmental Science & Technology, 2006, 40, 6310-6317.	4.6	202
11	Prediction of Zinc, Cadmium, Lead, and Copper Availability to Wheat in Contaminated Soils Using Chemical Speciation, Diffusive Gradients in Thin Films, Extraction, and Isotopic Dilution Techniques. Journal of Environmental Quality, 2005, 34, 496-507.	1.0	197
12	Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 2013, 463-464, 120-130.	3.9	196
13	Dissolution Kinetics of Macronutrient Fertilizers Coated with Manufactured Zinc Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 3991-3998.	2.4	191
14	Lability of Cd, Cu, and Zn in Polluted Soils Treated with Lime, Beringite, and Red Mud and Identification of a Non-Labile Colloidal Fraction of Metals Using Isotopic Techniques. Environmental Science & Technology, 2003, 37, 979-984.	4.6	190
15	Solubility and Batch Retention of CeO ₂ Nanoparticles in Soils. Environmental Science & Technology, 2011, 45, 2777-2782.	4.6	190
16	Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology, 2020, 54, 15883-15892.	4.6	171
17	Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 2011, 409, 1489-1497.	3.9	168
18	Retention and Dissolution of Engineered Silver Nanoparticles in Natural Soils. Soil Science Society of America Journal, 2012, 76, 891-902.	1.2	165

#	Article	IF	CITATIONS
19	Chemical Speciation of Zn, Cd, Cu, and Pb in Pore Waters of Agricultural and Contaminated Soils Using Donnan Dialysis. Environmental Science & Technology, 2003, 37, 90-98.	4.6	164
20	Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health, 2004, 26, 343-357.	1.8	161
21	SOIL PROPERTIES AFFECTING TOXICITY OF ZINC TO SOIL MICROBIAL PROPERTIES IN LABORATORY-SPIKED AND FIELD-CONTAMINATED SOILS. Environmental Toxicology and Chemistry, 2004, 23, 2633.	2.2	159
22	Crop residue phosphorus: speciation and potential bio-availability. Plant and Soil, 2012, 359, 375-385.	1.8	155
23	Heavy metals in soils and crops in Southeast Asia 2. Thailand. Environmental Geochemistry and Health, 2004, 26, 359-371.	1.8	142
24	Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Research, 2003, 41, 61.	0.6	138
25	Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DCT) and extraction methods. Plant and Soil, 2010, 337, 243-258.	1.8	138
26	Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytologist, 2013, 199, 367-378.	3.5	133
27	Zinc for better crop production and human health. Plant and Soil, 2017, 411, 1-4.	1.8	133
28	Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Applied Materials & Interfaces, 2017, 9, 43325-43335.	4.0	131
29	Lead and lead isotopes in agricultural soils of Europe – The continental perspective. Applied Geochemistry, 2012, 27, 532-542.	1.4	129
30	Mechanisms of Attenuation of Metal Availability in In Situ Remediation Treatments. Environmental Science & Technology, 2002, 36, 3991-3996.	4.6	127
31	Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 2009, 41, 2214-2221.	4.2	122
32	Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols. Soil Science Society of America Journal, 2015, 79, 551-558.	1.2	121
33	Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant and Soil, 2017, 410, 139-152.	1.8	120
34	The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 1996, 27, 1331-1354.	0.6	119
35	Effect of Chloride in Soil Solution on the Plant Availability of Biosolidâ€Borne Cadmium. Journal of Environmental Quality, 2004, 33, 496-504.	1.0	119
36	Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops. Water Science and Technology, 2010, 62, 48-57.	1.2	117

#	Article	IF	CITATIONS
37	A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environmental Chemistry, 2010, 7, 298.	0.7	114
38	Metal Bioaccumulation and Toxicity in Soils—Why Bother with Speciation?. Australian Journal of Chemistry, 2003, 56, 77.	0.5	112
39	In Vivo Synchrotron Study of Thallium Speciation and Compartmentation inIberis intermedia. Environmental Science & Technology, 2004, 38, 5095-5100.	4.6	111
40	New soil composition data for Europe and Australia: Demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Science of the Total Environment, 2012, 416, 239-252.	3.9	110
41	Long-Term Changes in Cadmium Bioavailability in Soil. Environmental Science & Technology, 1998, 32, 3699-3703.	4.6	107
42	SHORT-TERM NATURAL ATTENUATION OF COPPER IN SOILS: EFFECTS OF TIME, TEMPERATURE, AND SOIL CHARACTERISTICS. Environmental Toxicology and Chemistry, 2006, 25, 652.	2.2	107
43	DETERMINING TOXICITY OF LEAD AND ZINC RUNOFF IN SOILS: SALINITY EFFECTS ON METAL PARTITIONING AND ON PHYTOTOXICITY. Environmental Toxicology and Chemistry, 2003, 22, 3017.	2.2	106
44	The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). Journal of Experimental Botany, 2003, 54, 349-354.	2.4	106
45	The influence of sewage sludge properties on sludge-borne metal availability. Journal of Environmental Management, 2003, 8, 21-36.	1.7	100
46	Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chemistry Central Journal, 2013, 7, 46.	2.6	100
47	Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 2008, 27, 786-792.	2.2	98
48	Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 2015, 300, 788-795.	6.5	98
49	A Field Investigation of Solubility and Food Chain Accumulation of Biosolid-Cadmium Across Diverse Soil Types. Environmental Chemistry, 2006, 3, 428.	0.7	97
50	SOIL FACTORS CONTROLLING THE TOXICITY OF COPPER AND ZINC TO MICROBIAL PROCESSES IN AUSTRALIAN SOILS. Environmental Toxicology and Chemistry, 2007, 26, 583.	2.2	97
51	Complex Forms of Soil Organic Phosphorus–A Major Component of Soil Phosphorus. Environmental Science & Technology, 2015, 49, 13238-13245.	4.6	97
52	Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes. Chemosphere, 2019, 222, 671-678.	4.2	91
53	Agronomic Effectiveness of Zinc Sources as Micronutrient Fertilizer. Advances in Agronomy, 2016, 139, 215-267.	2.4	90
54	Assessment of the Use of Industrial Byâ€Products to Remediate a Copper―and Arsenicâ€Contaminated Soil. Journal of Environmental Quality, 2004, 33, 902-910.	1.0	85

#	Article	IF	CITATIONS
55	Mercury in European agricultural and grazing land soils. Applied Geochemistry, 2013, 33, 1-12.	1.4	82
56	Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS ONE, 2015, 10, e0126275.	1.1	82
57	Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biology and Biochemistry, 2007, 39, 900-913.	4.2	81
58	GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. Journal of Geochemical Exploration, 2015, 154, 81-93.	1.5	81
59	Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environmental Pollution, 2015, 206, 256-263.	3.7	80
60	Determination of Metalâ^'EDTA Complexes in Soil Solution and Plant Xylem by Ion Chromatography-Electrospray Mass Spectrometry. Environmental Science & Technology, 2001, 35, 2589-2593.	4.6	77
61	The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biology, 2019, 19, 133.	1.6	76
62	Use and abuse of isotopic exchange data in soil chemistry. Soil Research, 2002, 40, 1371.	0.6	74
63	Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands. Environmental Science & Technology, 2014, 48, 8620-8626.	4.6	74
64	Arsenic in agricultural and grazing land soils of Europe. Applied Geochemistry, 2013, 28, 2-10.	1.4	73
65	Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 2018, 185, 97-104.	4.6	73
66	Adaptation of Soil Biological Nitrification to Heavy Metals. Environmental Science & Technology, 2004, 38, 3092-3097.	4.6	72
67	GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil. Applied Geochemistry, 2014, 48, 207-216.	1.4	71
68	Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. Plant Cell, 2018, 30, 1147-1164.	3.1	71
69	Changes in soil bacterial communities and diversity in response to long-term silver exposure. FEMS Microbiology Ecology, 2015, 91, fiv114.	1.3	67
70	Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. Journal of Agricultural and Food Chemistry, 2012, 60, 6037-6044.	2.4	65
71	Polyphosphate-fertilizer solution stability with time, temperature, and pH. Journal of Plant Nutrition and Soil Science, 2007, 170, 387-391.	1.1	63
72	How important is the mycorrhizal pathway for plant Zn uptake?. Plant and Soil, 2015, 390, 157-166.	1.8	63

#	Article	IF	CITATIONS
73	Determination of NTA and EDTA and Speciation of Their Metal Complexes in Aqueous Solution by Capillary Electrophoresis. Environmental Science & Technology, 2000, 34, 885-891.	4.6	62
74	Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values. Earth and Planetary Science Letters, 2012, 319-320, 269-276.	1.8	61
75	Effect of wheat phosphorus status on leaf surface properties and permeability to foliar-applied phosphorus. Plant and Soil, 2014, 384, 7-20.	1.8	61
76	Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Science of the Total Environment, 2022, 817, 152975.	3.9	60
77	Agronomic Effectiveness of Granulated and Powdered P-Exchanged Mg–Al LDH Relative to Struvite and MAP. Journal of Agricultural and Food Chemistry, 2017, 65, 6736-6744.	2.4	59
78	Coupling Speciation and Isotope Dilution Techniques To Study Arsenic Mobilization in the Environment. Environmental Science & amp; Technology, 2004, 38, 1794-1798.	4.6	58
79	Uptake of intact zincâ€ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environmental Toxicology and Chemistry, 2002, 21, 1940-1945.	2.2	57
80	Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	56
81	Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Research, 2005, 43, 203.	0.6	56
82	The effect of soil water status on fertiliser, topsoil and subsoil phosphorus utilisation by wheat. Plant and Soil, 2012, 358, 337-348.	1.8	56
83	Fate and lability of silver in soils: Effect of ageing. Environmental Pollution, 2014, 191, 151-157.	3.7	56
84	Extent of copper tolerance and consequences for functional stability of the ammoniaâ€oxidizing community in longâ€term copperâ€contaminated soils. Environmental Toxicology and Chemistry, 2010, 29, 27-37.	2.2	55
85	Efficacy of zinc oxides as fertilisers. Plant and Soil, 2014, 374, 843-855.	1.8	55
86	Organic Ligand and pH Effects on Isotopically Exchangeable Cadmium in Polluted Soils. Soil Science Society of America Journal, 2003, 67, 112-121.	1.2	54
87	Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity. Environmental Pollution, 2010, 158, 2110-2116.	3.7	54
88	Ce, La and Y concentrations in agricultural and grazing-land soils of Europe. Journal of Geochemical Exploration, 2013, 133, 202-213.	1.5	54
89	Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biology and Biochemistry, 2007, 39, 2693-2695.	4.2	53
90	Natural Colloidal P and Its Contribution to Plant P Uptake. Environmental Science & Technology, 2015, 49, 3427-3434.	4.6	53

#	Article	IF	CITATIONS
91	Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions. Plant and Soil, 2005, 269, 25-34.	1.8	52
92	A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes. Pedobiologia, 2010, 53, 149-158.	0.5	52
93	Improving the efficacy of selenium fertilizers for wheat biofortification. Scientific Reports, 2019, 9, 19520.	1.6	52
94	Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant and Soil, 2014, 378, 125-137.	1.8	51
95	Determination of Tl(I)and Tl(III)by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia. Journal of Analytical Atomic Spectrometry, 2004, 19, 757-761.	1.6	50
96	X-ray fluorescence microscopy of zinc localization in wheat grains biofortified through foliar zinc applications at different growth stages under field conditions. Plant and Soil, 2015, 392, 357-370.	1.8	50
97	Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties. Biosystems Engineering, 2017, 161, 24-36.	1.9	50
98	Aging of nickel added to soils as predicted by soil pH and time. Chemosphere, 2013, 92, 962-968.	4.2	49
99	Total Petroleum Hydrocarbon Concentration Prediction in Soils Using Diffuse Reflectance Infrared Spectroscopy. Soil Science Society of America Journal, 2013, 77, 450-460.	1.2	49
100	Soil test measures of available P (Colwell, resin and DGT) compared with plant P uptake using isotope dilution. Plant and Soil, 2013, 373, 711-722.	1.8	48
101	Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Soil Research, 2007, 45, 448.	0.6	46
102	Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality. Science of the Total Environment, 2013, 461-462, 240-257.	3.9	46
103	Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labelling experiment. Soil Biology and Biochemistry, 2014, 71, 31-39.	4.2	46
104	Elemental Sulfur Oxidation in Australian Cropping Soils. Soil Science Society of America Journal, 2015, 79, 89-96.	1.2	46
105	The role of surface charge and pH changes in tropical soils on sorption behaviour of per- and polyfluoroalkyl substances (PFASs). Science of the Total Environment, 2019, 673, 197-206.	3.9	46
106	Influences of soil properties and leaching on nickel toxicity to barley root elongation. Ecotoxicology and Environmental Safety, 2011, 74, 459-466.	2.9	45
107	Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma, 2012, 175-176, 58-63.	2.3	45
108	Effects of long-term irrigation with reclaimed water on soils of the Northern Adelaide Plains, South Australia. Soil Research, 2003, 41, 933.	0.6	44

#	Article	IF	CITATIONS
109	Potential for foliar phosphorus fertilisation of dryland cereal crops: a review. Crop and Pasture Science, 2010, 61, 659.	0.7	44
110	Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environmental Chemistry, 2018, 15, 472.	0.7	44
111	Uptake of Metals from Soil into Vegetables. , 2011, , 325-367.		44
112	Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS. Analytical and Bioanalytical Chemistry, 2004, 380, 789-797.	1.9	43
113	Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Science of the Total Environment, 2009, 407, 2546-2556.	3.9	43
114	Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environmental Toxicology and Chemistry, 2002, 21, 1940-5.	2.2	43
115	Identification of hydroxyl copper toxicity to barley (<i>Hordeum vulgare</i>) root elongation in solution culture. Environmental Toxicology and Chemistry, 2009, 28, 662-667.	2.2	42
116	Geochemical evidence of aeolian deposits in <scp>E</scp> uropean soils. Boreas, 2014, 43, 175-192.	1.2	42
117	Phosphorus Diffusion from Fertilizer: Visualization, Chemical Measurements, and Modeling. Soil Science Society of America Journal, 2014, 78, 832-842.	1.2	42
118	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS ONE, 2016, 11, e0161979.	1.1	41
119	Root Uptake of Lipophilic Zincâ ``Rhamnolipid Complexes. Journal of Agricultural and Food Chemistry, 2008, 56, 2112-2117.	2.4	40
120	Effect of Chloride in Soil Solution on the Plant Availability of Biosolid-Borne Cadmium. Journal of Environmental Quality, 2004, 33, 496.	1.0	40
121	Interferences in the determination of isotopically exchangeable P in soils and a method to minimise them. Soil Research, 2002, 40, 1383.	0.6	39
122	Geochemical fingerprinting and source discrimination of agricultural soils at continental scale. Chemical Geology, 2015, 396, 1-15.	1.4	39
123	Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study. Journal of Environmental Quality, 2018, 47, 371-377.	1.0	39
124	The Availability of Copper in Soils Historically Amended with Sewage Sludge, Manure, and Compost. Journal of Environmental Quality, 2012, 41, 506-514.	1.0	38
125	Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant and Soil, 2007, 290, 323-331.	1.8	37
126	Influences of soil properties and leaching on copper toxicity to barley root elongation. Environmental Toxicology and Chemistry, 2010, 29, 835-842.	2.2	37

#	Article	IF	CITATIONS
127	Oxidation of Elemental Sulfur in Granular Fertilizers Depends on the Soil-Exposed Surface Area. Soil Science Society of America Journal, 2016, 80, 294-305.	1.2	37
128	Density Changes around Phosphorus Granules and Fluid Bands in a Calcareous Soil. Soil Science Society of America Journal, 2006, 70, 960-966.	1.2	36
129	Changes in P Bioavailability Induced by the Application of Liquid and Powder Sources of P, N and Zn Fertilizers in Alkaline Soils. Nutrient Cycling in Agroecosystems, 2006, 74, 27-40.	1.1	36
130	A Predictive Model of the Effects of Aging on Cobalt Fate and Behavior in Soil. Environmental Science & Technology, 2009, 43, 135-141.	4.6	36
131	Remobilisation of silver and silver sulphide nanoparticles in soils. Environmental Pollution, 2014, 193, 102-110.	3.7	36
132	An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture. Journal of Plant Nutrition and Soil Science, 2015, 178, 543-554.	1.1	36
133	The rapid assessment of concentrations and solid phase associations of macro- and micronutrients in alkaline soils by mid-infrared diffuse reflectance spectroscopy. Soil Research, 2002, 40, 1339.	0.6	35
134	Critical Loads of Metals and Other Trace Elements to Terrestrial Environments. Environmental Science & Technology, 2007, 41, 6326-6331.	4.6	35
135	Transfer functions for solid–solution partitioning of cadmium for Australian soils. Environmental Pollution, 2011, 159, 3583-3594.	3.7	35
136	Characterization and ecological risk assessment of nanoparticulate CeO ₂ as a diesel fuel catalyst. Environmental Toxicology and Chemistry, 2013, 32, 1896-1905.	2.2	35
137	Geogenic and agricultural controls on the geochemical composition of European agricultural soils. Journal of Soils and Sediments, 2014, 14, 121-137.	1.5	35
138	Predicting partitioning of radiolabelled 14C-PFOA in a range of soils using diffuse reflectance infrared spectroscopy. Science of the Total Environment, 2019, 686, 505-513.	3.9	35
139	Background zinc concentrations in soil affect the zinc sensitivity of soil microbial processes—a rationale for a metalloregion approach to risk assessments. Environmental Toxicology and Chemistry, 2001, 20, 2639-2643.	2.2	34
140	Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: Results from an isotopic dilution study. Environmental Pollution, 2006, 143, 407-415.	3.7	34
141	Di-n-butyl phthalate causes estrogenic effects in adult male Murray rainbowfish (Melanotaenia) Tj ETQq1 1 (0.784314 rgBT	/Oyerlock 10
142	The use of diffuse reflectance mid-infrared spectroscopy for the prediction of the concentration of chemical elements estimated by X-ray fluorescence in agricultural and grazing European soils. Applied Geochemistry, 2013, 29, 135-143.	1.4	32
143	Genetic mapping of quantitative trait loci for tuber-cadmium and zinc concentration in potato reveals associations with maturity and both overlapping and independent components of genetic control. Theoretical and Applied Genetics, 2018, 131, 929-945.	1.8	31
144	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils. Environmental Pollution, 2020, 258, 113726.	3.7	31

#	Article	IF	CITATIONS
145	Sequestration of Phosphorus-Binding Cations by Complexing Compounds is not a Viable Mechanism to Increase Phosphorus Efficiency. Soil Science Society of America Journal, 2013, 77, 2050-2059.	1.2	30
146	Reactions of Phosphate Fertilizers and By-Products in Soils. Agronomy, 0, , 181-252.	0.2	30
147	BACKGROUND ZINC CONCENTRATIONS IN SOIL AFFECT THE ZINC SENSITIVITY OF SOIL MICROBIAL PROCESSES—A RATIONALE FOR A METALLOREGION APPROACH TO RISK ASSESSMENTS. Environmental Toxicology and Chemistry, 2001, 20, 2639.	2.2	30
148	Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models. Environmental Pollution, 2008, 156, 707-714.	3.7	29
149	Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Science Society of America Journal, 2010, 74, 1589-1596.	1.2	29
150	Comparing of the difference and balance methods to calculate percent recovery of fertilizer phosphorus applied to soils: a critical discussion. Nutrient Cycling in Agroecosystems, 2012, 92, 1-8.	1.1	29
151	Fluid Fertilizers Improve Phosphorus Diffusion but not Lability in Andisols and Oxisols. Soil Science Society of America Journal, 2014, 78, 214-224.	1.2	29
152	Scientific integrity issues in Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and transparency. Integrated Environmental Assessment and Management, 2019, 15, 320-344.	1.6	29
153	Temporal trends of total and potentially available element concentrations in sewage biosolids: a comparison of biosolid surveys conducted 18 years apart. Science of the Total Environment, 2005, 337, 139-145.	3.9	28
154	Biological and chemical assessments of zinc ageing in field soils. Environmental Pollution, 2010, 158, 339-345.	3.7	28
155	Behaviour of fullerenes (C60) in the terrestrial environment: Potential release from biosolids-amended soils. Journal of Hazardous Materials, 2013, 262, 496-503.	6.5	27
156	Availability of fertiliser sulphate and elemental sulphur to canola in two consecutive crops. Plant and Soil, 2016, 398, 313-325.	1.8	27
157	The chemical nature of soil organic phosphorus: A critical review and global compilation of quantitative data. Advances in Agronomy, 2020, 160, 51-124.	2.4	27
158	EFFECT OF TOXIC CATIONS ON COPPER RHIZOTOXICITY IN WHEAT SEEDLINGS. Environmental Toxicology and Chemistry, 2005, 24, 372.	2.2	26
159	Speciation and Isotopic Exchangeability of Nickel in Soil Solution. Journal of Environmental Quality, 2009, 38, 485-492.	1.0	26
160	Aging Effects on Cobalt Availability in Soils. Environmental Toxicology and Chemistry, 2009, 28, 1609-1617.	2.2	26
161	Effects of the commercial antiandrogen flutamide on the biomarkers of reproduction in male Murray rainbowfish (<i>Melanotaenia fluviatilis</i>). Environmental Toxicology and Chemistry, 2014, 33, 1098-1107.	2.2	26
162	Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument. Talanta, 2016, 160, 410-416.	2.9	26

#	Article	IF	CITATIONS
163	Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils. Biology and Fertility of Soils, 2017, 53, 159-169.	2.3	26
164	Formulation, synthesis and characterization of boron phosphate (BPO ₄) compounds as raw materials to develop slowâ€release boron fertilizers. Journal of Plant Nutrition and Soil Science, 2014, 177, 860-868.	1.1	25
165	Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Environmental Pollution, 2016, 214, 731-736.	3.7	25
166	Stable Isotope Techniques for Assessing Labile Cu in Soils:Â Development of anL-Value Procedure, Its Application, and Reconciliation withEValues. Environmental Science & Technology, 2006, 40, 3342-3348.	4.6	24
167	Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil. Soil Science Society of America Journal, 2008, 72, 98-110.	1.2	24
168	Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environmental Pollution, 2010, 158, 1907-1915.	3.7	24
169	Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy. Talanta, 2014, 126, 122-129.	2.9	24
170	Influence of soil properties and soil leaching on the toxicity of ionic silver to plants. Environmental Toxicology and Chemistry, 2015, 34, 2503-2512.	2.2	24
171	Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology, 2022, 56, 368-378.	4.6	24
172	Wheat grain yield response to and translocation of foliar-applied phosphorus. Crop and Pasture Science, 2011, 62, 58.	0.7	23
173	The effect of soil properties on the toxicity of silver to the soil nitrification process. Environmental Toxicology and Chemistry, 2014, 33, 1170-1178.	2.2	23
174	Wheat leaf properties affecting the absorption and subsequent translocation of foliar-applied phosphoric acid fertiliser. Plant and Soil, 2014, 384, 37-51.	1.8	23
175	Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils. Soil Research, 2015, 53, 67.	0.6	23
176	Complexation of silver and dissolved organic matter in soil water extracts. Environmental Pollution, 2015, 199, 174-184.	3.7	23
177	GEMAS: Indium in agricultural and grazing land soil of Europe — Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 2015, 154, 61-80.	1.5	23
178	The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant and Soil, 2016, 401, 23-38.	1.8	23
179	Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers. Journal of Agricultural and Food Chemistry, 2017, 65, 1108-1115.	2.4	23
180	Uptake of elemental or sulfate-S from fall- or spring-applied co-granulated fertilizer by corn—A stable isotope and modeling study. Field Crops Research, 2018, 221, 322-332.	2.3	23

#	Article	IF	CITATIONS
181	Slow and Fastâ€Release Boron Sources in Potash Fertilizers: Spatial Variability, Nutrient Dissolution and Plant Uptake. Soil Science Society of America Journal, 2018, 82, 1437-1448.	1.2	23
182	The Timing of Application and Inclusion of a Surfactant Are Important for Absorption and Translocation of Foliar Phosphoric Acid by Wheat Leaves. Frontiers in Plant Science, 2019, 10, 1532.	1.7	23
183	Do Earthworms Mobilize Fixed Zinc from Ingested Soil?. Environmental Science & Technology, 2004, 38, 3036-3039.	4.6	22
184	Determination of labile Cu in soils and isotopic exchangeability of colloidal Cu complexes. European Journal of Soil Science, 2006, 57, 147-153.	1.8	22
185	Options for increasing the biological cycling of phosphorus in low-input and organic agricultural systems. Crop and Pasture Science, 2009, 60, 116.	0.7	22
186	Moisture effects on diffuse reflection infrared spectra of contrasting minerals and soils: A mechanistic interpretation. Vibrational Spectroscopy, 2016, 86, 244-252.	1.2	22
187	Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time. Soft Matter, 2016, 12, 209-218.	1.2	22
188	GEMAS: CNS concentrations and C/N ratios in European agricultural soil. Science of the Total Environment, 2018, 627, 975-984.	3.9	22
189	Ecotoxicology of manufactured graphene oxide nanomaterials and derivation of preliminary guideline values for freshwater environments. Environmental Toxicology and Chemistry, 2018, 37, 1340-1348.	2.2	22
190	An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil – plant systems. Journal of Hazardous Materials, 2021, 404, 124065.	6.5	22
191	The geochemistry of niobium and its distribution and relative mobility in agricultural soils of Europe. Geochemistry: Exploration, Environment, Analysis, 2012, 12, 293-302.	0.5	21
192	Cadmium uptake and partitioning in potato (Solanum tuberosum L.) cultivars with different tuber-Cd concentration. Environmental Science and Pollution Research, 2017, 24, 27384-27391.	2.7	21
193	Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils. Environmental Toxicology and Chemistry, 2013, 32, 2372-2378.	2.2	20
194	Bioaccumulation, uptake, and toxicity of carbamazepine in soil–plant systems. Environmental Toxicology and Chemistry, 2018, 37, 1122-1130.	2.2	20
195	Soil ecological criteria for nickel as a function of soil properties. Environmental Science and Pollution Research, 2018, 25, 2137-2146.	2.7	20
196	Composition and dissolution kinetics of jarosite-rich segregations extracted from an acid sulfate soil with sulfuric material. Chemical Geology, 2020, 543, 119606.	1.4	20
197	Structural and functional response of soil microbiota to addition of plant substrate are moderated by soil Cu levels. Biology and Fertility of Soils, 2010, 46, 333-342.	2.3	19
198	Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils. Talanta, 2013, 113, 123-129.	2.9	19

#	Article	IF	CITATIONS
199	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. Environmental Science and Technology Letters, 2016, 3, 7-12.	3.9	19
200	The chemical nature of organic phosphorus that accumulates in fertilized soils of a temperate pasture as determined by solution31P NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 2017, 180, 27-38.	1.1	19
201	Changes in the Nature of Sewage Sludge Organic Matter During a Twentyâ€Oneâ€Month Incubation. Journal of Environmental Quality, 2004, 33, 1924-1929.	1.0	18
202	Is rhamnolipid biosurfactant useful in cadmium phytoextraction?. Journal of Soils and Sediments, 2010, 10, 1289-1299.	1.5	18
203	Dry Soil Reduces Fertilizer Phosphorus and Zinc Diffusion but Not Bioavailability. Soil Science Society of America Journal, 2012, 76, 1301-1310.	1.2	18
204	Prediction of the concentration of chemical elements extracted by aqua regia in agricultural and grazing European soils using diffuse reflectance mid-infrared spectroscopy. Applied Geochemistry, 2013, 39, 33-42.	1.4	18
205	Diâ€nâ€butyl phthalate causes antiestrogenic effects in female murray rainbowfish (<i>Melanotaenia) Tj ETQq1 I</i>	1 0.78431 2.2	4 rgBT /Over
206	Effects of soil composition and preparation on the prediction of particle size distribution using mid-infrared spectroscopy and partial least-squares regression. Soil Research, 2016, 54, 889.	0.6	18
207	Direct Exports of Phosphorus from Fertilizers Applied to Grazed Pastures. Journal of Environmental Quality, 2019, 48, 1380-1396.	1.0	18
208	Pyrophosphate and orthophosphate addition to soils: sorption, cation concentrations, and dissolved organic carbon. Soil Research, 2007, 45, 237.	0.6	18
209	The influence of low rates of air-dried biosolids on yield and phosphorus and zinc nutrition of wheat (Triticum durum) and barley(Hordeum vulgare). Soil Research, 2003, 41, 293.	0.6	17
210	Cogranulation of Low Rates of Graphene and Graphene Oxide with Macronutrient Fertilizers Remarkably Improves Their Physical Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 1299-1309.	3.2	17
211	Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer. Talanta, 2018, 178, 400-409.	2.9	17
212	Australian Biosolids: Characterization and Determination of Available Copper. Environmental Chemistry, 2004, 1, 116.	0.7	17
213	Aging effects on molybdate lability in soils. Chemosphere, 2012, 89, 876-883.	4.2	16
214	Ageing of zinc in highly-weathered iron-rich soils. Plant and Soil, 2012, 361, 83-95.	1.8	16
215	Agronomic Effectiveness of Granular and Fluid Phosphorus Fertilizers in Andisols and Oxisols. Soil Science Society of America Journal, 2015, 79, 577-584.	1.2	16
216	Spectral sensitivity of solution 31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1:4 for pasture soils of low organic P content. Geoderma, 2015, 257-258, 48-57.	2.3	16

#	Article	IF	CITATIONS
217	A Novel Technique to Determine Cobalt Exchangeability in Soils Using Isotope Dilution. Environmental Science & Technology, 2008, 42, 140-146.	4.6	15
218	Chemical behavior of fluid and granular Mn and Zn fertilisers in alkaline soils. Soil Research, 2010, 48, 238.	0.6	15
219	Diffusion and solubility control of fertilizer-applied zinc: chemical assessment and visualization. Plant and Soil, 2015, 386, 195-204.	1.8	15
220	Effects of pH and ionic strength on elemental sulphur oxidation in soil. Biology and Fertility of Soils, 2017, 53, 247-256.	2.3	15
221	Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere, 2020, 238, 124558.	4.2	15
222	Engineered Phosphate Fertilizers with Dual-Release Properties. Industrial & Engineering Chemistry Research, 2020, 59, 5512-5524.	1.8	15
223	Phosphorus and nitrogen fertiliser use efficiency of wheat seedlings grown in soils from contrasting tillage systems Plant and Soil, 2015, 396, 297-309.	1.8	14
224	Release of Dissolved Cadmium and Sulfur Nanoparticles from Oxidizing Sulfide Minerals. Soil Science Society of America Journal, 2011, 75, 842-854.	1.2	13
225	Responses of Canola to the Application of Slow-Release Boron Fertilizers and Their Residual Effect. Soil Science Society of America Journal, 2015, 79, 97-103.	1.2	13
226	Longâ€ŧerm exposures to diâ€nâ€butyl phthalate inhibit body growth and impair gonad development in juvenile Murray rainbowfish (<i>Melanotaenia fluviatilis</i>). Journal of Applied Toxicology, 2015, 35, 806-816.	1.4	13
227	Direct recovery of 33 P-labelled fertiliser phosphorus in subterranean clover (Trifolium) Tj ETQq1 1 0.784314 rgBT Ecosystems and Environment, 2017, 246, 144-156.	/Overlock 2.5	10 Tf 50 3 13
228	Model-based rationalization of sulphur mineralization in soils using 35S isotope dilution. Soil Biology and Biochemistry, 2018, 120, 1-11.	4.2	13
229	Influence of soil phosphorus status, texture, <scp>pH</scp> and metal content on the efficacy of amendments to pig slurry in reducing phosphorus losses. Soil Use and Management, 2018, 34, 1-8.	2.6	13
230	Potential of zinc-loaded graphene oxide and arbuscular mycorrhizal fungi to improve the growth and zinc nutrition of Hordeum vulgare and Medicago truncatula. Applied Soil Ecology, 2020, 150, 103464.	2.1	13
231	Copper Lability in Soils Subjected to Intermittent Submergence. Journal of Environmental Quality, 2010, 39, 2047-2053.	1.0	12
232	Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In Situ Rice Roots. Journal of Environmental Quality, 2011, 40, 679-695.	1.0	12
233	Slow-release boron fertilisers: co-granulation of boron sources with mono-ammonium phosphate (MAP). Soil Research, 2015, 53, 505.	0.6	12
234	Rapid and Low-Cost Method for Evaluation of Nutrient Release from Controlled-Release Fertilizers Using Electrical Conductivity. Journal of Polymers and the Environment, 2018, 26, 4388-4395.	2.4	12

#	Article	IF	CITATIONS
235	Derivation of Soil Ecological Criteria for Copper in Chinese Soils. PLoS ONE, 2015, 10, e0133941.	1.1	12
236	Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology, 2022, 56, 10030-10041.	4.6	12
237	Exchangeability of orthophosphate and pyrophosphate in soils: a double isotopic labelling study. Plant and Soil, 2009, 314, 243-252.	1.8	11
238	Derivation of Ecologically Based Soil Standards for Trace Elements. , 2010, , 7-80.		11
239	Effects of short-term exposure to the model anti-androgen, flutamide on reproductive function based endpoints in female Murray rainbowfish (Melanotaenia fluviatilis). Ecotoxicology and Environmental Safety, 2014, 109, 143-151.	2.9	11
240	Boron phosphates (BPO4) as a seedling-safe boron fertilizer source. Plant and Soil, 2015, 391, 153-160.	1.8	11
241	Derivation of ecological standards for risk assessment of molybdate in soil. Environmental Chemistry, 2016, 13, 168.	0.7	11
242	Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni. Environmental Pollution, 2017, 231, 165-172.	3.7	11
243	Colloidal nitrogen is an important and highly-mobile form of nitrogen discharging into the Great Barrier Reef lagoon. Scientific Reports, 2018, 8, 12854.	1.6	11
244	A column perfusion test to assess the kinetics of nutrient release by soluble, sparingly soluble and coated granular fertilizers. Journal of Plant Nutrition and Soil Science, 2019, 182, 763-771.	1.1	11
245	Assessment of foliar-applied phosphorus fertiliser formulations to enhance phosphorus nutrition and grain production in wheat. Crop and Pasture Science, 2020, 71, 795.	0.7	11
246	Transformation and fixation of Zn in two polluted soils by changes of pH and organic ligands. Soil Research, 2003, 41, 905.	0.6	10
247	Application of the diffusive gradients in thin films technique for available potassium measurement in agricultural soils: Effects of competing cations on potassium uptake by the resin gel. Analytica Chimica Acta, 2014, 842, 27-34.	2.6	10
248	Roles of shoots and roots in cadmium uptake and distribution in tubers of potato (Solanum) Tj ETQq0 0 0 rgBT μ	Overlock 1 1.8	.0
249	Revealing the dependence of graphene concentration and physicochemical properties on the crushing strength of co-granulated fertilizers by wet granulation process. Powder Technology, 2020, 360, 588-597.	2.1	10
250	Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. Chemosphere, 2020, 245, 125640.	4.2	10
251	Effects of Biosolids Application on Pasture and Grape Vines in South-Eastern Australia. Applied and Environmental Soil Science, 2011, 2011, 1-11.	0.8	9

252A stableâ€isotope methodology for measurement of soilâ€applied zincâ€fertilizer recovery in durum wheat
(<i>Triticum durum </i>). Journal of Plant Nutrition and Soil Science, 2013, 176, 756-763.1.19

#	Article	IF	CITATIONS
253	Use of "Bioavailability―as a term in ecotoxicology. Integrated Environmental Assessment and Management, 2014, 10, 138-140.	1.6	9
254	Fate of radiolabeled C60 fullerenes in aged soils. Environmental Pollution, 2017, 221, 293-300.	3.7	9
255	Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports, 2017, 7, 11391.	1.6	9
256	The use of mid-infrared diffuse reflectance spectroscopy for acid sulfate soil analysis. Science of the Total Environment, 2019, 646, 1489-1502.	3.9	9
257	Effect of soil properties on time-dependent fixation (ageing) of selenate. Geoderma, 2021, 383, 114741.	2.3	9
258	Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilized using common adsorbents: 2. Effects of repeated leaching, temperature extremes, ionic strength and competing ions. Science of the Total Environment, 2021, 766, 144718.	3.9	9
259	Magnesium-fortified phosphate fertilizers improve nutrient uptake and plant growth without reducing phosphorus availability. Pedosphere, 2022, 32, 744-751.	2.1	9
260	Influence of submergence and subsequent drainage on the partitioning and lability of added selenium fertilizers in a sulphurâ€containing Fluvisol. European Journal of Soil Science, 2012, 63, 514-522.	1.8	8
261	In situ 33P-labelling of canola and lupin to estimate total phosphorus accumulation in the root system. Plant and Soil, 2014, 382, 291-299.	1.8	8
262	A method to determine silver partitioning and lability in soils. Environmental Chemistry, 2014, 11, 63.	0.7	8
263	GEMAS: Prediction of solidâ€solution partitioning coefficients (<i>K</i> _d) for cationic metals in soils using midâ€infrared diffuse reflectance spectroscopy. Environmental Toxicology and Chemistry, 2015, 34, 224-234.	2.2	8
264	Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato). Nanomaterials, 2016, 6, 68.	1.9	8
265	Effect of Cogranulation on Oxidation of Elemental Sulfur: Theoretical Model and Experimental Validation. Soil Science Society of America Journal, 2016, 80, 1244-1253.	1.2	8
266	Comparison and modelling of extraction methods to assess agronomic effectiveness of fertilizer zinc. Journal of Plant Nutrition and Soil Science, 2020, 183, 248-259.	1.1	8
267	Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilised using common adsorbents: 1. Effects of perturbations in pH. Science of the Total Environment, 2021, 766, 144857.	3.9	8
268	Zinc uptake and partitioning in two potato cultivars: implications for biofortification. Plant and Soil, 2021, 463, 601-613.	1.8	8
269	Layered Double Hydroxides as Slow-Release Fertilizer Compounds for the Micronutrient Molybdenum. Journal of Agricultural and Food Chemistry, 2021, 69, 14501-14511.	2.4	8
270	Isotopic Exchangeability, Hydrolysis and Mobilization Reactions of Pyrophosphate in Soil. Soil Science Society of America Journal, 2008, 72, 1337-1343.	1.2	7

#	Article	IF	CITATIONS
271	GEMAS: Prediction of solidâ€solution phase partitioning coefficients (<i>K</i> _d) for oxoanions and boric acid in soils using midâ€infrared diffuse reflectance spectroscopy. Environmental Toxicology and Chemistry, 2015, 34, 235-246.	2.2	7
272	Low Effective Surface Area Explains Slow Oxidation of Coâ€Granulated Elemental Sulfur. Soil Science Society of America Journal, 2016, 80, 911-918.	1.2	7
273	Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study. Environmental Science and Pollution Research, 2016, 23, 21327-21335.	2.7	7
274	Sulfur Uptake from Fertilizer Fortified with Sulfate and Elemental S in Three Contrasting Climatic Zones. Agronomy, 2020, 10, 1035.	1.3	7
275	Long-term fate of fertilizer sulfate- and elemental S in co-granulated fertilizers. Nutrient Cycling in Agroecosystems, 2021, 120, 31-48.	1.1	7
276	Efficiency of soil-applied 67Zn-enriched fertiliser across three consecutive crops. Pedosphere, 2021, 31, 531-537.	2.1	7
277	Removal of soluble Cu and Pb by the automatic drip coffee brewing process: Application to risk assessment. Human and Ecological Risk Assessment (HERA), 2000, 6, 313-322.	1.7	6
278	Polyphosphate Speciation for Soil and Fertilizer Analysis. Communications in Soil Science and Plant Analysis, 2007, 38, 2445-2460.	0.6	6
279	Coâ€ŧreatment with the nonâ€steroidal antiâ€endrogen drug, flutamide and the natural estrogen, 17βâ€estradiol does not lead to additive reproductive impairment in juvenile Murray rainbowfish (<i>Melanotaenia fluviatilis</i>). Journal of Applied Toxicology, 2015, 35, 1241-1253.	1.4	6
280	A bacterium-based contact assay for evaluating the quality of solid samples–Results from an international ring-test. Journal of Hazardous Materials, 2018, 352, 139-147.	6.5	6
281	Optimisation of phosphate loading on graphene oxide–Fe(<scp>iii</scp>) composites – possibilities for engineering slow release fertilisers. New Journal of Chemistry, 2019, 43, 8580-8589.	1.4	6
282	Soil phosphorus pools with addition of fertiliser phosphorus in a long-term grazing experiment. Nutrient Cycling in Agroecosystems, 2020, 116, 151-164.	1.1	6
283	Sulfur fertilization strategy affects grass yield, nitrogen uptake, and nitrate leaching: A field lysimeter study [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 209-220.	1.1	6
284	UPTAKE OF INTACT ZINC–ETHYLENEDIAMINETETRAACETIC ACID FROM SOIL IS DEPENDENT ON PLANT SPECIES AND COMPLEX CONCENTRATION. Environmental Toxicology and Chemistry, 2002, 21, 1940.	2.2	5
285	Development of an organomineral fertiliser formulation that improves tomato growth and sustains arbuscular mycorrhizal colonisation. Science of the Total Environment, 2022, 815, 151977.	3.9	5
286	Copper Partitioning Among Mineral and Organic Fractions in Biosolids. Environmental Chemistry, 2006, 3, 48.	0.7	4
287	Use of 33P to trace in situ the fate of canola below-ground phosphorus, including wheat uptake in two contrasting soils. Crop and Pasture Science, 2016, 67, 726.	0.7	4
288	Quantifying total phosphorus accumulation below-ground by canola and lupin plants using 33P-labelling. Plant and Soil, 2016, 401, 39-50.	1.8	4

#	Article	IF	CITATIONS
289	Utilization of Biologically Treated Organic Waste on Land. , 0, , 665-682.		3
290	Mixedâ€Mode Remediation of Cadmium and Arsenate Ions Using Grapheneâ€Based Materials. Clean - Soil, Air, Water, 2018, 46, 1800073.	0.7	3
291	Application method influences the oxidation rate of biologically and chemically produced elemental sulfur fertilizers. Soil Science Society of America Journal, 2021, 85, 746-759.	1.2	3
292	Using 77Se-Labelled Foliar Fertilisers to Determine How Se Transfers Within Wheat Over Time. Frontiers in Nutrition, 2021, 8, 732409.	1.6	1
293	Metal Bioaccumulation and Toxicity in Soils — Why Bother with Speciation?. ChemInform, 2003, 34, no.	0.1	0
294	Response to the letter to the editor by A. E. Johnston and D. Curtin. Nutrient Cycling in Agroecosystems, 2012, 93, 249-251.	1.1	0
295	RESPONSES OF TOMATO VAR. TINY TOM TO APPLICATION OF COPPER AND ZINC FERTILIZERS IN THREE LIMED TROPICAL PEAT SOILS OF SARAWAK. Journal of Plant Nutrition, 2013, 36, 1590-1604.	0.9	0
296	The Soil and its Chemistry- Critical Futures. IOP Conference Series: Earth and Environmental Science, 2015, 25, 012007.	0.2	0
297	Screening fertilizers for their phosphorus runoff risk using laboratory methods. Journal of Environmental Quality, 2021, 50, 955-966.	1.0	0
298	Natural Attenuation. , 2006, , 173-195.		0
299	Biological Assessmento f Natural Attenuation of Metals in Soil. , 2006, , 41-56.		0
300	Extreme biogeochemical effects following simulation of recurrent drought in acid sulfate soils. Applied Geochemistry, 2022, 136, 105146.	1.4	0