Zhiqiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8594426/publications.pdf

Version: 2024-02-01

1163117 940533 22 382 8 16 citations h-index g-index papers 24 24 24 425 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Research on Risk Evaluation and Dynamic Escape Path Planning Algorithm Based on Real-Time Spread of Ship Comprehensive Fire. Journal of Marine Science and Engineering, 2020, 8, 602.	2.6	10
2	Study on the constitutive model of porous titanium alloy. Emerging Materials Research, 2019, 8, 365-375.	0.7	1
3	One-Dimensional Constitutive Model for Porous Titanium Alloy at Various Strain Rates and Temperatures. Metals, 2017, 7, 24.	2.3	4
4	Study on the Tribological Properties of Porous Titanium Sliding against Tungsten Carbide YG6. Metals, 2017, 7, 28.	2.3	9
5	Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays. Journal of Cleaner Production, 2015, 108, 145-157.	9.3	37
6	A Coupling Response Surfaces Methodology of Multiple Constraints (CRSMMC) for parameters optimization of broach tool in broaching of heat-resistant steel X12CrMoWVNb N-10-1-1. International Journal of Advanced Manufacturing Technology, 2014, 74, 1719-1732.	3.0	7
7	An investigation on wear mechanism of high-speed turning of free-cutting steel AISI 1215 using uncoated and multi-layer coated tools. International Journal of Advanced Manufacturing Technology, 2013, 67, 517-533.	3.0	13
8	A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition. International Journal of Precision Engineering and Manufacturing, 2013, 14, 693-702.	2.2	39
9	Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 2013, 305, 249-259.	3.1	146
10	Experimental investigation of microdrilling of printed circuit board. Circuit World, 2013, 39, 82-94.	0.9	11
11	Friction in Turning Titanium Alloy Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si under Minimum Quantity Lubrication (MQL) Condition. Advanced Materials Research, 2012, 500, 99-104.	0.3	1
12	Wear Mechanism of High-Speed Turning Ti-6Al-4V with TiAlN and AlTiN Coated Tools in Dry and MQL Conditions. Advanced Materials Research, 2012, 497, 30-34.	0.3	8
13	Investigation of Grinding Ti-6Al-4V under Minimum Quantity Lubrication (MQL) Condition. Key Engineering Materials, 2011, 487, 84-88.	0.4	5
14	Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive. International Journal of Advanced Manufacturing Technology, 2011, 57, 135-142.	3.0	62
15	Parameters Optimization of Turning Free Cutting Steel Based on the Coupling Method of Response Surfaces. Advanced Materials Research, 2011, 188, 301-306.	0.3	1
16	Study on Grinding Machinability of Titanium Alloy Using SiC Abrasive. Key Engineering Materials, 2011, 487, 34-38.	0.4	2
17	Investigation of Surface Integrity in Conventional Grinding of Ti-6Al-4V. Advanced Materials Research, 0, 126-128, 899-904.	0.3	8
18	Surface Roughness Prediction in Turning of Free Machining Steel 1215 by Artificial Neural Network. Advanced Materials Research, 0, 188, 535-541.	0.3	1

ZHIQIANG LIU

#	Article	lF	CITATION
19	Analysis of Specific Energy of TC18 and TA19 Titanium Alloys in Surface Grinding. Advanced Materials Research, 0, 325, 147-152.	0.3	0
20	Experimental Research of Grinding TC4 Titanium Alloy Using Green Silicon Carbide Wheel. Key Engineering Materials, 0, 487, 121-125.	0.4	6
21	Machinability Study on Hard Milling of Ultra-High Strength Steel 30Cr3SiNiMoVA. Advanced Materials Research, 0, 565, 496-502.	0.3	3
22	Investigation on Surface Grinding of Ti-6Al-4V Using Minimum Quantity Lubrication. Advanced Materials Research, 0, 500, 308-313.	0.3	8