
Umberto Laforenza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8594417/publications.pdf Version: 2024-02-01

LIMBEDTO LAFODENZA

#	Article	IF	CITATIONS
1	Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation–Vasoconstriction Competition. Cells, 2022, 11, 1047.	1.8	10
2	Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells. Cells, 2022, 11, 1892.	1.8	13
3	Nicotinic acid adenine dinucleotide phosphate activates twoâ€pore channel TPC1 to mediate lysosomal Ca ²⁺ release in endothelial colonyâ€forming cells. Journal of Cellular Physiology, 2021, 236, 688-705.	2.0	22
4	Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie, 2021, 188, 45-51.	1.3	9
5	Sigma-1 Receptor Agonists Acting on Aquaporin-Mediated H2O2 Permeability: New Tools for Counteracting Oxidative Stress. International Journal of Molecular Sciences, 2021, 22, 9790.	1.8	10
6	NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium, 2021, 99, 102454.	1.1	18
7	Histamine induces intracellular Ca ²⁺ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. Journal of Cellular Physiology, 2020, 235, 1515-1530.	2.0	28
8	Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cellular and Molecular Life Sciences, 2020, 77, 2235-2253.	2.4	32
9	Setup and Validation of a Reliable Docking Protocol for the Development of Neuroprotective Agents by Targeting the Sigma-1 Receptor (S1R). International Journal of Molecular Sciences, 2020, 21, 7708.	1.8	6
10	Manuka Honey Induces Apoptosis of Epithelial Cancer Cells through Aquaporin-3 and Calcium Signaling. Life, 2020, 10, 256.	1.1	9
11	HPV Infection Affects Human Sperm Functionality by Inhibition of Aquaporin-8. Cells, 2020, 9, 1241.	1.8	21
12	Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Communications Biology, 2020, 3, 222.	2.0	59
13	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers, 2019, 11, 542.	1.7	41
14	Propolis Induces AQP3 Expression: A Possible Way of Action in Wound Healing. Molecules, 2019, 24, 1544.	1.7	27
15	Honey-Mediated Wound Healing: H2O2 Entry through AQP3 Determines Extracellular Ca2+ Influx. International Journal of Molecular Sciences, 2019, 20, 764.	1.8	44
16	Muscarinic M5 receptors trigger acetylcholineâ€induced Ca ²⁺ signals and nitric oxide release in human brain microvascular endothelial cells. Journal of Cellular Physiology, 2019, 234, 4540-4562.	2.0	38
17	Human adipose glycerol flux is regulated by a pH gate in AQP10. Nature Communications, 2018, 9, 4749.	5.8	90
18	Stim and Orai mediate constitutive Ca2+ entry and control endoplasmic reticulum Ca2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget, 2018, 9, 31098-31119.	0.8	36

UMBERTO LAFORENZA

#	Article	IF	CITATIONS
19	Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. Journal of Neuroscience, 2017, 37, 1340-1351.	1.7	61
20	Regulation of Aquaporin Functional Properties Mediated by the Antioxidant Effects of Natural Compounds. International Journal of Molecular Sciences, 2017, 18, 2665.	1.8	32
21	Aquaporin-Mediated Water and Hydrogen Peroxide Transport Is Involved in Normal Human Spermatozoa Functioning. International Journal of Molecular Sciences, 2017, 18, 66.	1.8	54
22	VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget, 2017, 8, 95223-95246.	0.8	41
23	Constitutive Store-Operated Ca ²⁺ Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells. Stem Cells and Development, 2016, 25, 301-319.	1.1	51
24	Stress Regulates Aquaporin-8 Permeability to Impact Cell Growth and Survival. Antioxidants and Redox Signaling, 2016, 24, 1031-1044.	2.5	82
25	Mammalian aquaglyceroporin function in metabolism. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1-11.	1.4	54
26	Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. Journal of Applied Toxicology, 2016, 36, 113-120.	1.4	28
27	A Functional Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Is Expressed in Human Endothelial Progenitor Cells. Journal of Cellular Physiology, 2015, 230, 95-104.	2.0	45
28	Ca ²⁺ Signalling in Endothelial Progenitor Cells: A Novel Means to Improve Cell-Based Therapy and Impair Tumour Vascularisation. Current Vascular Pharmacology, 2014, 12, 87-105.	0.8	61
29	Store-Operated Ca2+Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma. BioMed Research International, 2014, 2014, 1-19.	0.9	51
30	Enhanced Expression of Stim, Orai, and TRPC Transcripts and Proteins in Endothelial Progenitor Cells Isolated from Patients with Primary Myelofibrosis. PLoS ONE, 2014, 9, e91099.	1.1	60
31	Posttranscriptional regulation of SOD1 gene expression under oxidative stress: Potential role of ELAV proteins in sporadic ALS. Neurobiology of Disease, 2013, 60, 51-60.	2.1	40
32	Canonical Transient Receptor Potential 3 Channel Triggers Vascular Endothelial Growth Factor-Induced Intracellular Ca ²⁺ Oscillations in Endothelial Progenitor Cells Isolated from Umbilical Cord Blood. Stem Cells and Development, 2013, 22, 2561-2580.	1.1	74
33	Aquaporin-10 Represents an Alternative Pathway for Glycerol Efflux from Human Adipocytes. PLoS ONE, 2013, 8, e54474.	1.1	86
34	Expression and Localization of Ryanodine Receptors in the Frog Semicircular Canal. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-6.	3.0	2
35	Store-Dependent Ca2+ Entry in Endothelial Progenitor Cells As a Perspective Tool to Enhance Cell-Based Therapy and Adverse Tumour Vascularization. Current Medicinal Chemistry, 2012, 19, 5802-5818.	1.2	108
36	Hematopoietic Progenitor and Stem Cells Circulate by Surfing on Intracellular Ca2+ Waves: A Novel Target for Cell-based Therapy and Anti-cancer Treatment?. Current Signal Transduction Therapy, 2012, 7, 161-176.	0.3	41

Umberto Laforenza

#	Article	IF	CITATIONS
37	Water channel proteins in the gastrointestinal tract. Molecular Aspects of Medicine, 2012, 33, 642-650.	2.7	146
38	Store-Operated Ca2+ Entry Is Remodelled and Controls In Vitro Angiogenesis in Endothelial Progenitor Cells Isolated from Tumoral Patients. PLoS ONE, 2012, 7, e42541.	1.1	121
39	Acute and chronic acidosis influence on antioxidant equipment and transport proteins of rat jejunal enterocyte. Cell Biology International, 2011, 35, 345-353.	1.4	5
40	Vascular Endothelial Growth Factor Stimulates Endothelial Colony Forming Cells Proliferation and Tubulogenesis by Inducing Oscillations in Intracellular Ca2+ Concentration. Stem Cells, 2011, 29, 1898-1907.	1.4	140
41	SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiology of Disease, 2010, 39, 198-203.	2.1	57
42	Store-Operated Ca ²⁺ Entry Is Expressed in Human Endothelial Progenitor Cells. Stem Cells and Development, 2010, 19, 1967-1981.	1.1	104
43	Aquaporin-6 Expression in the Cochlear Sensory Epithelium Is Downregulated by Salicylates. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	7
44	Solute transporters and aquaporins are impaired in celiac disease. Biology of the Cell, 2010, 102, 457-467.	0.7	43
45	Cardiac Microvascular Endothelial Cells Express a Functional Ca ²⁺ -Sensing Receptor. Journal of Vascular Research, 2009, 46, 73-82.	0.6	29
46	Aquaporin-6 is expressed along the rat gastrointestinal tract and upregulated by feeding in the small intestine. BMC Physiology, 2009, 9, 18.	3.6	31
47	Post-transcriptional Regulation of Neuro-oncological Ventral Antigen 1 by the Neuronal RNA-binding Proteins ELAV. Journal of Biological Chemistry, 2008, 283, 7531-7541.	1.6	56
48	Post-Transcriptional Regulation of HSP70 Expression Following Oxidative Stress in SH-SY5Y Cells: The Potential Involvement of the RNA-Binding Protein HuR. Current Pharmaceutical Design, 2008, 14, 2651-2658.	0.9	59
49	Histamine H1 receptors are expressed in mouse and frog semicircular canal sensory epithelia. NeuroReport, 2008, 19, 425-429.	0.6	8
50	Oxidative stress reduces transintestinal transports and (Na+, K+)-ATPase activity in rat jejunum. Archives of Biochemistry and Biophysics, 2007, 466, 300-307.	1.4	9
51	Osmotic water permeability of rat intestinal brush border membrane vesicles: involvement of aquaporin-7 and aquaporin-8 and effect of metal ions. Biochemistry and Cell Biology, 2007, 85, 675-684.	0.9	27
52	Transglutaminase 2 in the enterocytes is coeliac specific and gluten dependent. Digestive and Liver Disease, 2006, 38, 652-658.	0.4	16
53	Jejunal Creatine Absorption: What is the Role of the Basolateral Membrane?. Journal of Membrane Biology, 2005, 207, 183-195.	1.0	20
54	Aquaporin-8 Is Involved in Water Transport in Isolated Superficial Colonocytes from Rat Proximal Colon. Journal of Nutrition, 2005, 135, 2329-2336.	1.3	45

Umberto Laforenza

#	Article	IF	CITATIONS
55	Expression and immunolocalization of aquaporin-7 in rat gastrointestinal tract. Biology of the Cell, 2005, 97, 605-613.	0.7	62
56	Altered expression of aquaporin 4 and H+/K+-ATPase in the stomachs of peptide YY (PYY) transgenic mice. Biology of the Cell, 2005, 97, 735-742.	0.7	11
57	PKA Regulation of Bicarbonate and Lactate Movements Across Rat Jejunal Plasma Membranes. Cellular Physiology and Biochemistry, 2004, 14, 77-90.	1.1	2
58	PYY-Tag Transgenic Mice Displaying Abnormal (H+-K+)ATPase Activity and Gastric Mucosal Barrier Impairment. Laboratory Investigation, 2003, 83, 47-54.	1.7	2
59	Molecular characteristics of small intestinal and renal brush border thiamin transporters in rats. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1558, 187-197.	1.4	13
60	Guanidine Transport across the Apical and Basolateral Membranes of Human Intestinal Caco-2 Cells Is Mediated by Two Different Mechanisms. Journal of Nutrition, 2002, 132, 1995-2003.	1.3	10
61	Protein Kinase C Regulation of Rat Jejunal Transport Systems: Mechanisms Involved in Bicarbonate Absorption. Experimental Physiology, 2002, 87, 299-309.	0.9	3
62	Transport of thiamin in rat renal brush border membrane vesicles. Kidney International, 2000, 57, 2043-2054.	2.6	35
63	Riboflavin Phosphorylation Is the Crucial Event in Riboflavin Transport by Isolated Rat Enterocytes. Journal of Nutrition, 2000, 130, 2556-2561.	1.3	26
64	Thiamine Intestinal Transport and Related Issues: Recent Aspects. Proceedings of the Society for Experimental Biology and Medicine, 2000, 224, 246-255.	2.0	124
65	Thiamine Intestinal Transport and Related Issues: Recent Aspects. Proceedings of the Society for Experimental Biology and Medicine, 2000, 224, 246-255.	2.0	78
66	Energy Depletion Differently Affects Membrane Transport and Intracellular Metabolism of Riboflavin Taken up by Isolated Rat Enterocytes. Journal of Nutrition, 1999, 129, 406-409.	1.3	14
67	Lipophilic thiamine treatment in long-standing insulin-dependent diabetes mellitus. Acta Diabetologica, 1999, 36, 73-76.	1.2	22
68	A Thiamine/H + Antiport Mechanism for Thiamine Entry into Brush Border Membrane Vesicles from Rat Small Intestine. Journal of Membrane Biology, 1998, 161, 151-161.	1.0	31
69	Thiamine uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamine deficiency. American Journal of Clinical Nutrition, 1997, 66, 320-326.	2.2	71
70	[14] In vitro systems for studying thiamin transport in mammals. Methods in Enzymology, 1997, 279, 118-131.	0.4	11
71	Facilitated Transport of Lactate by Rat Jejunal Enterocyte. Journal of Membrane Biology, 1997, 158, 257-264.	1.0	12
72	Proton-lactate co transport in basolateral membrane vesicles from rat jejunum. Bioscience Reports, 1996, 16, 521-527.	1.1	3

UMBERTO LAFORENZA

#	Article	IF	CITATIONS
73	Further studies on erythrocyte thiamin transport and phosphorylation in seven patients with thiamin-responsive megaloblastic anaemia. Journal of Inherited Metabolic Disease, 1994, 17, 667-677.	1.7	66
74	Thiamine outflow from the enterocyte: a study using basolateral membrane vesicles from rat small intestine Journal of Physiology, 1993, 468, 401-412.	1.3	32
75	Thiamin Contents of Cerebrospinal Fluid, Plasma and Erythrocytes in Cerebellar Ataxias. European Neurology, 1992, 32, 154-158.	0.6	17
76	Thiamin mono- and pyrophosphatase activities from brain homogenate of Guamanian amyotrophic lateral sclerosis and parkinsonism-dementia patients. Journal of the Neurological Sciences, 1992, 109, 156-161.	0.3	11
77	Age-related thiamin transport by small intestinal microvillous vesicles of rat. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1105, 271-277.	1.4	16
78	Thiamine transport by erythrocytes and ghosts in thiamine-responsive megaloblastic anaemia. Journal of Inherited Metabolic Disease, 1992, 15, 231-242.	1.7	42
79	EFFECT OF ETHANOL ADMINISTRATION ON THE IN VIVO KINETICS OF THIAMINE PHOSPHORYLATION AND DEPHOSPHORYLATION IN DIFFERENT ORGANS. I. CHRONIC EFFECTS. Alcohol and Alcoholism, 1991, 26, 285-301.	0.9	14
80	EFFECTS OF ACUTE AND CHRONIC ETHANOL ADMINISTRATION ON THIAMINE METABOLIZING ENZYMES IN SOME BRAIN AREAS AND IN OTHER ORGANS OF THE RAT. Alcohol and Alcoholism, 1990, 25, 591-603.	0.9	61
81	Distribution of Thiamine, Thiamine Phosphates, and Thiamine Metabolizing Enzymes in Neuronal and Glial Cell Enriched Fractions of Rat Brain. Journal of Neurochemistry, 1988, 51, 730-735.	2.1	25
82	Blood?Brain Transport of Thiamine Monophosphate in the Rat: A Kinetic Study In Vivo. Journal of Neurochemistry, 1988, 50, 90-93.	2.1	29
83	Intestinal transport of thiamin and thiamin monophosphate in rat everted jejunal sacs: A comparative study using some potential inhibitors. Archives Internationales De Physiologie Et De Biochimie, 1988, 96, 223-230.	0.2	11