Tea Pemovska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8594364/publications.pdf Version: 2024-02-01

TEA DEMOUSKA

#	Article	IF	CITATIONS
1	Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia. Cancer Discovery, 2013, 3, 1416-1429.	7.7	334
2	Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Reports, 2014, 4, 5193.	1.6	243
3	Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature, 2015, 519, 102-105.	13.7	207
4	Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica, 2019, 104, 1935-1949.	1.7	93
5	Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia. Leukemia, 2014, 28, 1738-1742.	3.3	90
6	JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell–induced protection of AML. Blood, 2017, 130, 789-802.	0.6	90
7	Recent advances in combinatorial drug screening and synergy scoring. Current Opinion in Pharmacology, 2018, 42, 102-110.	1.7	80
8	Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discovery, 2022, 12, 372-387.	7.7	77
9	Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia, 2018, 32, 774-787.	3.3	75
10	HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia, 2017, 31, 301-309.	3.3	61
11	Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML. Leukemia, 2017, 31, 1187-1195.	3.3	44
12	Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia, 2017, 31, 51-57.	3.3	42
13	Combined chemosensitivity and chromatin profiling prioritizes drug combinations in CLL. Nature Chemical Biology, 2019, 15, 232-240.	3.9	34
14	Development of metastatic HER2 ⁺ breast cancer is independent of the adaptive immune system. Journal of Pathology, 2011, 224, 56-66.	2.1	21
15	Novel drug candidates for blast phase chronic myeloid leukemia from high-throughput drug sensitivity and resistance testing. Blood Cancer Journal, 2015, 5, e309-e309.	2.8	19
16	From drug response profiling to target addiction scoring in cancer cell models. DMM Disease Models and Mechanisms, 2015, 8, 1255-1264.	1.2	13
17	Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget, 2017, 8, 22606-22615.	0.8	13
18	8â€chloroâ€adenosine activity in FLT3â€ITD acute myeloid leukemia. Journal of Cellular Physiology, 2019, 234, 16295-16303.	2.0	12

Τεα Ρεμονςκα

#	Article	IF	CITATIONS
19	Core-binding factor leukemia hijacks the T-cell–prone PU.1 antisense promoter. Blood, 2021, 138, 1345-1358.	0.6	12
20	Rationale for the combination of venetoclax and ibrutinib in T-prolymphocytic leukemia. Haematologica, 2021, 106, 2251-2256.	1.7	7
21	Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nature Metabolism, 2021, 3, 651-664.	5.1	7
22	Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nature Communications, 2021, 12, 7190.	5.8	7
23	Novel Activating STAT5B Mutations As Drivers Of T-ALL. Blood, 2013, 122, 3863-3863.	0.6	5
24	A personalised medicine drug sensitivity and resistance testing platform and utilisation of acoustic droplet ejection at the Institute for Molecular Medicine Finland. Synergy, 2014, 1, 78.	1.1	4
25	8-Chloro-Adenosine Inhibits Molecular Poor-Risk Acute Myeloid Leukemia (AML) and Leukemic Stem Cells (LSC) Growth Via Novel RNA- and ATP-Directed Mechanisms: A Novel Therapeutic Approach for AML. Blood, 2015, 126, 792-792.	0.6	2
26	Treatment Guided By Next Generation Functional Drug Screening Provides Clinical Benefit in Advanced Aggressive Hematological Malignancies: Final Evaluation of the Open Label, Single Arm Exalt Trial. Blood, 2020, 136, 2-4.	0.6	1
27	High-Throughput Ex Vivo Drug Sensitivity and Resistance Testing (DSRT) Integrated with Deep Genomic and Molecular Profiling Reveal New Therapy Options with Targeted Drugs in Subgroups of Relapsed Chemorefractory AML. Blood, 2012, 120, 288-288.	0.6	1
28	AML Specific Targeted Drugs Identified By Drug Sensitivity and Resistance Testing: Comparison of Ex Vivo Patient Cells with in Vitro Cell Lines. Blood, 2014, 124, 2163-2163.	0.6	1
29	Stromal-Derived Factors Modulate Ex Vivo Drug Responses of Primary Acute Myeloid Leukemia Cells. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S8-S9.	0.2	0
30	Development of a Cancer Pharmacopeia-Wide Ex-Vivo Drug Sensitivity and Resistance Testing (DSRT) Platform: Identification of MEK and mTOR As Patient-Specific Molecular Drivers of Adult AML and Potent Therapeutic Combinations with Dasatinib. Blood, 2011, 118, 2487-2487.	0.6	0
31	Stromal Cell Supported High-Throughput Drug Testing Of Primary Leukemia Cells For Comprehensive Assessment Of Sensitivity To Novel Therapies. Blood, 2013, 122, 1668-1668.	0.6	0
32	Primary T-Prolymphocytic Leukemia (T-PLL) Cells Are Sensitive To BCL-2 and HDAC Inhibitors: Results From High-Throughput Ex Vivo Drug Testing. Blood, 2013, 122, 3828-3828.	0.6	0
33	Identification Of AML Subtype-Selective Drugs By Functional Ex Vivo Drug Sensitivity and Resistance Testing and Genomic Profiling. Blood, 2013, 122, 482-482.	0.6	0
34	High-Throughput Drug Sensitivity and Resistance Testing (DSRT) Platform Reveals Novel Candidate Drugs For Advanced Phase BCR-ABL1-Positive Leukemia. Blood, 2013, 122, 2719-2719.	0.6	0
35	Discovery of Novel Drug Sensitivities in T-Prolymphocytic Leukemia (T-PLL) By High-Throughput Ex Vivo Drug Testing and Genetic Profiling. Blood, 2014, 124, 917-917.	0.6	0
36	Stroma-Derived Factors Significantly Impact the Drug Response Profiles of Patient-Derived Primary AML Cells: Implications for Drug Sensitivity Testing. Blood, 2014, 124, 3505-3505.	0.6	0

Τεα Ρεμονςκα

#	Article	IF	CITATIONS
37	Analysis of Clonal Evolution in Chemorefractory Acute Myeloid Leukemia from Diagnosis to Relapse. Blood, 2014, 124, 1022-1022.	0.6	0
38	A Profound Biological Difference of Chronic and Blast Phase Chronic Myeloid Leukemia in Ex Vivo Drug Responses. Blood, 2014, 124, 3139-3139.	0.6	0
39	BCL2-Inhibitors Target a Major Group of Newly-Diagnosed and Relapsed/Refractory Acute Myeloid Leukemia Ex Vivo. Blood, 2015, 126, 2462-2462.	0.6	0
40	JAK1/2 and BCL2 Inhibitors Synergize to Counter-Act Bone Marrow Stromal Cell-Induced Protection of AML. Blood, 2015, 126, 867-867.	0.6	0
41	8-Chloro-Adenosine Inhibits Molecular Poor-Risk Acute Myeloid Leukemia (AML) and Leukemic Stem Cells (LSC) Growth and Synergizes with the BCL-2 Inhibitor Venetoclax (ABT-199). Blood, 2016, 128, 2758-2758.	0.6	0
42	Integrated ATAC-Seq and Chemosensitivity Profiling Identifies Rational Drug Combinations in Ibrutinib-Treated CLL Patients. Blood, 2017, 130, 800-800.	0.6	0
43	Metabolic Drug Survey Highlights Cancer Cell Dependencies and Vulnerabilities. Blood, 2020, 136, 26-27.	0.6	0