
Andrew G Lvov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8594256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and spectral properties of a novel family of photochromic diarylethenes-2,3-diarylcyclopent-2-en-1-ones. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, 1-14.	2.0	60
2	Azole-based diarylethenes as the next step towards advanced photochromic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 36, 1-23.	5.6	53
3	Photoinduced Skeletal Rearrangement of Diarylethenes Comprising Oxazole and Phenyl Rings. Organic Letters, 2014, 16, 4532-4535.	2.4	50
4	Fluorescent photochromes of diarylethene series: synthesis and properties. Russian Chemical Reviews, 2013, 82, 511-537.	2.5	42
5	General Photoinduced Sequential Electrocyclization/[1,9]-Sigmatropic Rearrangement/Ring-Opening Reaction of Diarylethenes. Journal of Organic Chemistry, 2015, 80, 11491-11500.	1.7	42
6	Synthesis and Comparative Photoswitching Studies of Unsymmetrical 2,3-Diarylcyclopent-2-en-1-ones. Journal of Organic Chemistry, 2014, 79, 3440-3451.	1.7	39
7	Regio- and Chemoselective Bromination of 2,3-Diarylcyclopent-2-en-1-ones. Journal of Organic Chemistry, 2012, 77, 8112-8123.	1.7	37
8	New fluorescent switches based on photochromic 2,3-diarylcyclopent-2-en-1-ones and 6-ethoxy-3-methyl-1H-phenalen-1-one. Dyes and Pigments, 2013, 97, 311-317.	2.0	29
9	OFETâ€Based Memory Devices Operating via Optically and Electrically Modulated Charge Separation between the Semiconductor and 1,2â€bis(Hetaryl)ethene Dielectric Layers. Advanced Electronic Materials, 2016, 2, 1500219.	2.6	28
10	Photoinduced Rearrangements of Diarylethenes. Chemistry of Heterocyclic Compounds, 2016, 52, 658-665.	0.6	27
11	Synthesis and photochromic properties of oxime derivatives of 2,3-diarylcyclopent-2-en-1-ones. Photochemical and Photobiological Sciences, 2013, 12, 1717-1725.	1.6	23
12	Photochemical Rearrangement of Diarylethenes: Reaction Efficiency and Substituent Effects. Journal of Organic Chemistry, 2017, 82, 8651-8661.	1.7	23
13	Postâ€Modification of the Ethene Bridge in the Rational Design of Photochromic Diarylethenes. Chemical Record, 2020, 20, 51-63.	2.9	23
14	Switching the Mallory Reaction to Synthesis of Naphthalenes, Benzannulated Heterocycles, and Their Derivatives. Journal of Organic Chemistry, 2020, 85, 8749-8759.	1.7	23
15	Molecular structure–electrical performance relationship for OFET-based memory elements comprising unsymmetrical photochromic diarylethenes. Journal of Materials Chemistry C, 2019, 7, 6889-6894.	2.7	21
16	Synthesis and spectral properties of photochromic cyclopentenone diarylethenes with an additional Ï€ system in the ethene bridge. Mendeleev Communications, 2013, 23, 268-270.	0.6	20
17	Azulene as an ingredient for visible-light- and stimuli-responsive photoswitches. Organic and Biomolecular Chemistry, 2021, 19, 4460-4468.	1.5	20
18	Photorearrangement of dihetarylethenes as a tool for the benzannulation of heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 4990-5000.	1.5	19

ANDREW G LVOV

#	Article	IF	CITATIONS
19	Reversible Shifting of a Chemical Equilibrium by Light: The Case of Keto–Enol Tautomerism of a β-Ketoester. Organic Letters, 2020, 22, 604-609.	2.4	19
20	Structural and Spectral Properties of Photochromic Diarylethenes: Size Effect of the Ethene Bridge. Journal of Organic Chemistry, 2017, 82, 1477-1486.	1.7	18
21	Photoswitching off the Antiproliferative Activity of Combretastatin A-4 Analogues. Organic Letters, 2019, 21, 9608-9612.	2.4	17
22	Novel photochromic diarylethenes bearing an imidazole moiety. Tetrahedron Letters, 2015, 56, 5477-5481.	0.7	16
23	Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process. Photochemical and Photobiological Sciences, 2019, 18, 1101-1109.	1.6	16
24	Photo- and PH-switchable fluorescent diarylethenes based on 2,3-diarylcyclopent-2-en-1-ones with dialkylamino groups. Dyes and Pigments, 2016, 124, 258-267.	2.0	15
25	Mechanistic Aspects of Photoinduced Rearrangement of 2,3-Diarylcyclopentenone Bearing Benzene and Oxazole Moieties. Journal of Physical Chemistry A, 2018, 122, 7107-7117.	1.1	15
26	Photochemical rearrangement of diarylethenes: synthesis of functionalized phenanthrenes. Organic and Biomolecular Chemistry, 2020, 18, 3098-3103.	1.5	15
27	Synthesis and spectral properties of 3-(2-aryl-5-methyl-1,3-oxazol-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	422 Td (4 0.6	-yl)-2-(2,5-din 14
28	Triaryl-Substituted Divinyl Ketones Cyclization: Nazarov Reaction versus Friedel–Crafts Electrophilic Substitution. Organic Letters, 2016, 18, 6260-6263.	2.4	13
29	Facile synthesis of photoactive diaryl(hetaryl)cyclopentenes by ionic hydrogenation. RSC Advances, 2016, 6, 59016-59020.	1.7	13
30	Synthesis of new photochromic diarylethenes of cyclopentenone series by Nazarov reaction. Chemistry of Heterocyclic Compounds, 2015, 51, 234-241.	0.6	12
31	Aerobic Dimerization of Ethyl 4-Thienyl-3-ketobutanoate toward a Modifiable Photochromic Diarylethene Precursor. Organic Letters, 2017, 19, 4395-4398.	2.4	12
32	Solvent dependent photoswitching and emission of diarylethenes with a π-conjugated push-pull system. Journal of Luminescence, 2022, 241, 118472.	1.5	11
33	Photocyclization of Diarylethenes: The Effect of Electron and Proton Acceptors as Additives. Journal of Organic Chemistry, 2021, 86, 10023-10031.	1.7	10
34	Synthesis and spectral properties of fluorescent photochromic diarylethenes with 6,6a-dihydropentalene-2(1H)-one ethene "bridge― Dyes and Pigments, 2014, 109, 105-112.	2.0	9
35	Practical and Efficient Synthesis of Polyaryl(hetaryl)-Substituted Cyclohexenones and Salicylates. Synthesis, 2017, 49, 1255-1263.	1.2	9
36	Light-Sensitive Material Structure–Electrical Performance Relationship for Optical Memory Transistors Incorporating Photochromic Dihetarylethenes. ACS Applied Materials & Interfaces, 2020, 12, 32987-32993.	4.0	9

ANDREW G LVOV

#	Article	IF	CITATIONS
37	New thermally stable photochromic di(het)arylethenes of the cyclopentenone series. Russian Chemical Bulletin, 2012, 61, 1769-1775.	0.4	7
38	A convenient alternative method for the synthesis of dithienylacetylenes. Chemistry of Heterocyclic Compounds, 2015, 51, 933-935.	0.6	7
39	Modulation of diarylethene fluorescence by photochromic switching and solvent polarity. Mendeleev Communications, 2019, 29, 564-566.	0.6	6
40	Photoisomerization of cyclopentene-based β-(2-furanyl)- and β-(2-thienyl)enones. Tetrahedron, 2017, 73, 4439-4449.	1.0	5
41	Synthesis and Antiproliferative Activity Evaluation of Aryl(Hetaryl)Cyclopentenone Analogs of Combretastatin A-4. Pharmaceutical Chemistry Journal, 2018, 51, 867-872.	0.3	5
42	Pinacol rearrangement of cyclopent-3-en-1,2-diols: Cyclopentenone formation and interrupting reaction. Tetrahedron Letters, 2018, 59, 243-246.	0.7	5
43	One-way photoisomerization of ligands for permanent switching of metal complexes. Journal of Materials Chemistry C, 2021, 9, 4757-4763.	2.7	5
44	Photochromic diarylethene ligands featuring 2-(imidazol-2-yl)pyridine coordination site and their iron(II) complexes. Beilstein Journal of Organic Chemistry, 2019, 15, 2428-2437.	1.3	4
45	Fluorescence modulation of eosin Y in a PMMA film by diarylethene switching. Mendeleev Communications, 2019, 29, 285-287.	0.6	4
46	Photocontrollable Modulation of Frontier Molecular Orbital Energy Levels of Cyclopentenone-Based Diarylethenes. Journal of Physical Chemistry A, 2021, 125, 3681-3688.	1.1	4
47	1,2-Bis- and 1,2,3-tris(2,5-dimethylthiophen-3-yl)azulenes: Synthesis, structure and properties. Dyes and Pigments, 2020, 172, 107843.	2.0	3
48	Primary processes in photochemistry of 2,3-bis(2,5-dimethylthiophen-3-yl)cyclopent-2-enone. Mendeleev Communications, 2020, 30, 61-63.	0.6	3
49	Effect of incorporation of silole and phosphole heterocycles into photoswitchable diarylethenes. Journal of Organometallic Chemistry, 2022, 957, 122151.	0.8	3
50	An Environmentally Friendly Synthesis of Michler's Ketone Analogues in Water. Synthesis, 2012, 2012, 527-531.	1.2	2
51	Spectral properties and structure of unsymmetrical diarylethenes based on thiazole ring with hydrogen at the reactive carbon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 348-356.	2.0	2
52	Practical Deoxygenation of Oxazole N-Oxides by PCl3/Collidine. Synthesis, 2019, 51, 414-420.	1.2	2
53	Dialkylation of Ethyl 4-(Het)aryl-3-oxobutanoates as a Route to 5-(2-Oxoethyl)cyclopentenones. Synlett, 2019, 30, 1321-1323.	1.0	0
54	Energy profile of formal 1,2-dyotropic rearrangement of diarylethenes. Izvestiâ Vuzov: Prikladnaâ HimiŢ I Biotehnologiâ, 2022, 12, 153-159.	0.1	0