Guohua Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8593749/publications.pdf

Version: 2024-02-01

50	1,761	21	42
papers	citations	h-index	g-index
51	51	51	1210 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C, 2019, 123, 23635-23642.	1.5	178
2	An overview of metamaterials and their achievements in wireless power transfer. Journal of Materials Chemistry C, 2018, 6, 2925-2943.	2.7	166
3	Dielectric dispersion of copper/rutile cermets: Dielectric resonance, relaxation, and plasma oscillation. Scripta Materialia, 2021, 190, 1-6.	2.6	107
4	Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. Journal of Materials Science and Technology, 2021, 61, 125-131.	5 . 6	106
5	Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Physical Chemistry Chemical Physics, 2020, 22, 5114-5122.	1.3	103
6	Facile Synthesis of Fe@Fe ₃ C/C Nanocomposites Derived from Bulrush for Excellent Electromagnetic Wave-Absorbing Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 18765-18774.	3.2	90
7	Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. Journal of Materials Chemistry C, 2019, 7, 3160-3167.	2.7	82
8	Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105753.	3.8	75
9	Low-temperature sintering Graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. Journal of Alloys and Compounds, 2019, 771, 699-710.	2.8	73
10	Negative permittivity in titanium nitrideâ€alumina composite for functionalized structural ceramics. Journal of the American Ceramic Society, 2020, 103, 403-411.	1.9	69
11	TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. Journal of Alloys and Compounds, 2021, 855, 157499.	2.8	60
12	Hydrosoluble Graphene/Polyvinyl Alcohol Membranous Composites with Negative Permittivity Behavior. Macromolecular Materials and Engineering, 2020, 305, 1900709.	1.7	59
13	Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. Journal of Alloys and Compounds, 2020, 835, 155345.	2.8	46
14	Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics. Journal of Materials Chemistry C, 2020, 8, 11610-11617.	2.7	43
15	Radioâ€frequency negative permittivity in the graphene/silicon nitride composites prepared by spark plasma sintering. Journal of the American Ceramic Society, 2018, 101, 1598-1606.	1.9	40
16	Defect-induced insulator-metal transition and negative permittivity in La1-Ba CoO3 perovskite structure. Journal of Materials Science and Technology, 2022, 112, 77-84.	5.6	38
17	Functional nano-units prepared by electrostatic self-assembly for three-dimension carbon networks hosted in CaCu3Ti4O12 ceramics towards radio-frequency negative permittivity. Journal of Alloys and Compounds, 2018, 743, 618-625.	2.8	32
18	Negative dielectric permittivity and high-frequency diamagnetic responses of percolated nickel/rutile cermets. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106132.	3.8	32

#	Article	IF	Citations
19	Tailorable radio-frequency negative permittivity of titanium nitride sintered with different oxidation pretreatments. Ceramics International, 2017, 43, 16980-16985.	2.3	30
20	Tunable radio-frequency negative permittivity of Carbon/CaCu3Ti4O12 metacomposites. Journal of Alloys and Compounds, 2020, 834, 155164.	2.8	30
21	Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis. Ceramics International, 2020, 46, 9342-9346.	2.3	28
22	Epsilon-negative media from the viewpoint of materials science. EPJ Applied Metamaterials, 2021, 8, 11.	0.8	23
23	Low-frequency plasmonic state and negative permittivity in copper/titanium dioxide percolating composites. Ceramics International, 2021, 47, 2208-2213.	2.3	22
24	Dielectric properties and negative permittivity performance modulated by dual fillers in CNTs/TiN/CaCu3Ti4O12 ternary composites. Ceramics International, 2022, 48, 28135-28141.	2.3	19
25	Regulation mechanism of negative permittivity in poly (p-phenylene sulfide)/multiwall carbon nanotubes composites. Synthetic Metals, 2018, 244, 15-19.	2.1	17
26	Bilayer dielectric composites with positive-ε and negative-ε layers achieving high dielectric constant and low dielectric loss. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107071.	3.8	17
27	Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range. Journal of Materials Science: Materials in Electronics, 2018, 29, 5853-5861.	1.1	16
28	Graphene/polyphenylene sulfide composites for tailorable negative permittivity media by plasmonic oscillation. Materials Letters, 2019, 257, 126683.	1.3	16
29	Percolated cermets of nickel/yttrium iron garnet for double negative metacomposites. Composites Communications, 2021, 24, 100667.	3.3	16
30	Core-shell structured tungsten carbide / polypyrrole metacomposites with tailorable negative permittivity at the radio frequency. Polymer, 2020, 188, 122125.	1.8	13
31	Low loading carbon nanotubes supported polypyrrole nano metacomposites with tailorable negative permittivity in radio frequency range. Organic Electronics, 2018, 63, 362-368.	1.4	12
32	Chiffon cake-derived hierarchically porous carbon with efficient microwave absorption properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 19173-19181.	1.1	12
33	Low-frequency plasmonic state and tunable negative permittivity in percolative graphite / barium titanate composites. Ceramics International, 2022, 48, 832-836.	2.3	12
34	Tunable and weakly negative permittivity at radio frequency range based on titanium nitride/polyethylene terephthalate composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 15994-16003.	1.1	10
35	Negative permittivity behavior of titanium nitride/polyphenylene sulfide "metacomposites―under radio frequency. Journal of Materials Science: Materials in Electronics, 2018, 29, 12144-12151.	1.1	9
36	Strategy of adjusting negative permittivity with invariant permeability property in metallic granular percolating composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 1246-1253.	1.1	8

#	Article	IF	CITATIONS
37	Flexible acrylic-polyurethane/copper composites with a frequency and temperature-independent permittivity. Journal of Materials Science: Materials in Electronics, 2018, 29, 20832-20839.	1.1	7
38	Communicationâ€"Epsilon-Negative Metacomposite Realized by Titanium Carbide Alumina Binary Ceramics in Radio Frequency. ECS Journal of Solid State Science and Technology, 2019, 8, N36-N38.	0.9	7
39	Weakly Radio-Frequency Negative Permittivity of Poly(vinylidene fluoride)/Ti3SiC2 MAX Phase Metacomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 248-257.	1.9	7
40	Three-dimensional graphene network supported by poly phenylene sulfide with negative permittivity at radio-frequency. Journal of Materials Science: Materials in Electronics, 2018, 29, 20768-20774.	1.1	6
41	Iron Granular Percolative Composites toward Radio-Frequency Negative Permittivity. ECS Journal of Solid State Science and Technology, 2018, 7, N132-N136.	0.9	4
42	Percolation-Induced Negative Permittivity in Multi-Walled Carbon Nanotube/Polyimide Metacomposites. ECS Journal of Solid State Science and Technology, 2021, 10, 113004.	0.9	4
43	The negative permittivity behavior of carbon nanotubes/yttrium iron garnet composites in the radio frequency. Materials Letters, 2018, 213, 282-285.	1.3	3
44	Paper-based flexible metamaterial for microwave applications. EPJ Applied Metamaterials, 2021, 8, 6.	0.8	3
45	Tailorable Negative Permittivity of Carbon Materials Derived from Microcrystalline Cellulose at Different Carbonizing Temperature. ECS Journal of Solid State Science and Technology, 2020, 9, 083001.	0.9	2
46	Meta-composites: NiO supported 3D carbon networks structured by 1D building blocks towards tailorable negative permittivity. Journal of Materials Science: Materials in Electronics, 2018, 29, 18815-18827.	1.1	1
47	Communication—Tunable and Weakly Negative Permittivity in CNTs-CBs/Polystyrene Metacomposites. ECS Journal of Solid State Science and Technology, 2019, 8, N141-N143.	0.9	1
48	MWCNTs/BaTiO3 metacomposite with negative permittivity behavior and electric percolation phenomenon in radio frequency. Journal of Materials Science: Materials in Electronics, 2019, 30, 10138-10144.	1.1	1
49	Complex Permittivity and Permeability Spectra of Nickel/Polyphenylene Sulfide Composite in Radio Frequency Range. Materials Science Forum, 0, 898, 1757-1763.	0.3	0
50	Tunable negative permittivity in Ti ₃ SiC ₂ MAX phase/Polymethyl methacrylate metacomposites at radio-frequency region. Functional Materials Letters, 2019, 12, 1850101.	0.7	0