Loredana Leggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8593093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. , 2021, 12, 1494.		21
2	High-Resolution Respirometry Reveals MPP+ Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 7809.	1.8	37
3	Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules, 2020, 10, 1327.	1.8	19
4	Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Advanced Healthcare Materials, 2020, 9, e2000731.	3.9	34
5	Glia-Derived Extracellular Vesicles in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1941.	1.0	18
6	Mechanism of translation control of the alternative Drosophila melanogaster Voltage Dependent Anion-selective Channel 1 mRNAs. Scientific Reports, 2018, 8, 5347.	1.6	18
7	Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Frontiers in Aging Neuroscience, 2018, 10, 12.	1.7	71
8	A Synthetic Peptide from the N-Terminal of Hexokinase I Prevents the Interaction Between VDAC1 and SOD1 G93A Mutant Recovering the Viability of an ALS Cell Model. Biophysical Journal, 2017, 112, 349a.	0.2	0
9	microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 2017, 18, 2698.	1.8	170
10	A computational study of ion current modulation in hVDAC3 induced by disulfide bonds. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 813-823.	1.4	15
11	Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability. Scientific Reports, 2016, 6, 34802.	1.6	53
12	VDAC3 Interactomic Analysis. Biophysical Journal, 2014, 106, 791a.	0.2	0