Jurg Keller

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/859295/jurg-keller-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

215	26,137	87	159
papers	citations	h-index	g-index
225 ext. papers	28,839 ext. citations	9.2 avg, IF	7.05 L-index

#	Paper	IF	Citations
215	Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation <i>Journal of Hazardous Materials</i> , 2022 , 434, 128886	12.8	O
214	Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. <i>Chemosphere</i> , 2021 , 291, 132723	8.4	3
213	Selective Extraction of Medium-Chain Carboxylic Acids by Electrodialysis and Phase Separation. <i>ACS Omega</i> , 2021 , 6, 7841-7850	3.9	2
212	The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. <i>Journal of Hazardous Materials</i> , 2021 , 402, 124051	12.8	4
211	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. <i>Water Research</i> , 2021 , 205, 117694	12.5	2
210	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. <i>Water Research</i> , 2020 , 174, 115627	12.5	14
209	Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. <i>Water Research</i> , 2020 , 171, 115396	12.5	20
208	Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. <i>Water Research</i> , 2020 , 184, 116179	12.5	4
207	Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16
206	Global diversity and biogeography of bacterial communities in wastewater treatment plants. <i>Nature Microbiology</i> , 2019 , 4, 1183-1195	26.6	248
205	Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation. <i>Chemical Communications</i> , 2019 , 55, 4351-4	1 3 584	41
204	Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. <i>Water Research</i> , 2019 , 157, 463-471	12.5	4
203	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. <i>Water Research</i> , 2019 , 165, 114996	12.5	11
202	Effective removal of MIB and geosmin using MBBR for drinking water treatment. <i>Water Research</i> , 2019 , 149, 440-447	12.5	8
201	Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. <i>Journal of Environmental Management</i> , 2019 , 234, 431-439	7.9	29
200	Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system. <i>Electrochemistry Communications</i> , 2018 , 89, 14-18	5.1	12
199	Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8485-8493	8.3	111

(2016-2018)

198	A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. <i>Water Research</i> , 2018 , 146, 109-117	12.5	36
197	Recovering Nitrogen as a Solid without Chemical Dosing: Bio-Electroconcentration for Recovery of Nutrients from Urine. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 119-124	11	81
196	Long-term performance of enhanced-zero valent iron for drinking water treatment: A lab-scale study. <i>Chemical Engineering Journal</i> , 2017 , 315, 124-131	14.7	7
195	A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Research, 2017 , 126, 411-420	12.5	45
194	Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. <i>Biofouling</i> , 2017 , 33, 780-792	3.3	18
193	Odor emissions from domestic wastewater: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2017 , 47, 1581-1611	11.1	52
192	Nutrient removal and energy recovery from high-rate activated sludge processes - Impact of sludge age. <i>Bioresource Technology</i> , 2017 , 245, 1155-1161	11	37
191	Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. <i>Chemical Engineering Journal</i> , 2017 , 330, 1265-1271	14.7	41
190	Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells. <i>Bioelectrochemistry</i> , 2017 , 118, 62-69	5.6	17
189	Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen. <i>Water Research</i> , 2017 , 108, 451-461	12.5	46
188	Prediction of concrete corrosion in sewers with hybrid Gaussian processes regression model. <i>RSC Advances</i> , 2017 , 7, 30894-30903	3.7	17
187	Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. <i>Photosynthesis Research</i> , 2016 , 127, 347-54	3.7	9
186	Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction. <i>Electrochimica Acta</i> , 2016 , 213, 66-74	6.7	23
185	Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. <i>Environmental Science & Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 8084-92	10.3	56
184	Biodegradability of DBP precursors after drinking water ozonation. Water Research, 2016, 106, 550-561	12.5	39
183	Predicting concrete corrosion of sewers using artificial neural network. Water Research, 2016 , 92, 52-60	12.5	76
182	Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes. <i>Science of the Total Environment</i> , 2016 , 550, 95-102	10.2	11
181	Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 1982-9	10.3	107

180	Effects of surface washing on the mitigation of concrete corrosion under sewer conditions. <i>Cement and Concrete Composites</i> , 2016 , 68, 88-95	8.6	21
179	Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide. <i>ChemElectroChem</i> , 2016 , 3, 581-591	4.3	94
178	Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor. <i>Water Science and Technology</i> , 2016 , 73, 1052-60	2.2	4
177	Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction. <i>Scientific Reports</i> , 2016 , 6, 39795	4.9	4
176	Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study. <i>Science of the Total Environment</i> , 2016 , 565, 616-625	10.2	13
175	Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. <i>Water Research</i> , 2016 , 100, 486-495	12.5	125
174	Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal - A review. <i>Water Research</i> , 2016 , 98, 384-95	12.5	72
173	A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. <i>Scientific Reports</i> , 2015 , 5, 8706	4.9	58
172	Enhancing toxic metal removal from acidified sludge with nitrite addition. <i>Environmental Science & Enhancing toxic metal removal from acidified sludge with nitrite addition. Environmental Science & Enhancing toxic metal removal from acidified sludge with nitrite addition. Environmental Science & Enhancing toxic metal removal from acidified sludge with nitrite addition. Environmental Science & Enhancing toxic metal removal from acidified sludge with nitrite addition. Environmental Science & Enhancing toxic metal removal from acidified sludge with nitrite addition. Environmental Science & Enhancing toxic metal science & Enhancing toxic metal science & Environmental Science & Enhancing toxic metal science & Enhancing</i>	10.3	29
171	Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. <i>Water Research</i> , 2015 , 81, 84-91	12.5	19
170	Source-separated urine opens golden opportunities for microbial electrochemical technologies. <i>Trends in Biotechnology</i> , 2015 , 33, 214-20	15.1	121
169	Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. <i>Microbial Biotechnology</i> , 2015 , 8, 483-9	6.3	29
168	Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation. <i>Water Research</i> , 2015 , 87, 49-58	12.5	90
167	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	183
166	Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. <i>RSC Advances</i> , 2015 , 5, 89368-89374	3.7	31
165	Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	4
164	Fully reversible current driven by a dual marine photosynthetic microbial community. <i>Bioresource Technology</i> , 2015 , 195, 248-53	11	10
163	Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. <i>Environmental Science & Environmental Scie</i>	10.3	178

(2013-2015)

162	A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. <i>Water Research</i> , 2015 , 70, 279-87	12.5	37
161	Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. <i>Bioelectrochemistry</i> , 2015 , 102, 56-63	5.6	54
160	Electrochemical Abatement of Hydrogen Sulfide from Waste Streams. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 1555-1578	11.1	52
159	Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. <i>Water Research</i> , 2015 , 69, 173-182	12.5	85
158	Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. <i>Journal of Hazardous Materials</i> , 2015 , 283, 551-7	12.8	190
157	Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. <i>Water Research</i> , 2015 , 80, 30-40	12.5	51
156	Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. <i>Water Research</i> , 2015 , 71, 150-9	12.5	54
155	Oxidised stainless steel: a very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. <i>Electrochimica Acta</i> , 2015 , 158, 356-360	6.7	41
154	Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Research, 2014, 50, 18-2	2612.5	115
153	The role of iron in sulfide induced corrosion of sewer concrete. Water Research, 2014, 49, 166-74	12.5	69
152	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13093-13102	13	195
151	Determining the long-term effects of HB concentration, relative humidity and air temperature on concrete sewer corrosion. <i>Water Research</i> , 2014 , 65, 157-69	12.5	86
150	Water engineering. Reducing sewer corrosion through integrated urban water management. <i>Science</i> , 2014 , 345, 812-4	33.3	151
149	A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. <i>Water Research</i> , 2014 , 59, 229-38	12.5	25
148	Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture. <i>Environmental Science & Environmental Science & Environment</i>	10.3	15
147	Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. <i>Nature</i> , 2013 , 500, 567-70	50.4	750
146	Anodic reactivity of ferrous sulfide precipitates changing over time due to particulate speciation. <i>Environmental Science & Environmental Science & E</i>	10.3	8
145	Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. <i>Environmental Science & Environmental Science & Env</i>	10.3	184

144	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. <i>Energy and Environmental Science</i> , 2013 , 6, 1291	35.4	110
143	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. <i>Electrochimica Acta</i> , 2013 , 108, 566-574	6.7	29
142	Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. <i>Water Research</i> , 2013 , 47, 6546-57	12.5	92
141	Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. <i>Environmental Science & Composition</i> , 2013, 47, 7563-70	10.3	234
140	Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. <i>Desalination</i> , 2013 , 309, 97-105	10.3	59
139	Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. <i>Environmental Science & Technology</i> , 2013 , 47, 11199-205	10.3	75
138	Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. <i>Environmental Science & Environmental Science & Environme</i>	10.3	36
137	Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production. <i>Journal of Environmental Engineering, ASCE</i> , 2013 , 139, 594-601	2	67
136	Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. <i>Water Research</i> , 2012 , 46, 863-72	12.5	253
135	Reductive electrochemical remediation of emerging and regulated disinfection byproducts. <i>Water Research</i> , 2012 , 46, 1705-14	12.5	66
134	Long-term field test of an electrochemical method for sulfide removal from sewage. <i>Water Research</i> , 2012 , 46, 3085-93	12.5	16
133	Surface neutralization and H(2)S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H(2)S concentration. <i>Water Research</i> , 2012 , 46, 4235-45	12.5	102
132	Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. <i>Environment International</i> , 2012 , 45, 99-111	12.9	97
131	Bioelectrochemical systems: Microbial versus enzymatic catalysis. <i>Electrochimica Acta</i> , 2012 , 82, 165-174	4 6.7	47
130	Evaluating a strategy for maintaining nitrifier activity during long-term starvation in a moving bed biofilm reactor (MBBR) treating reverse osmosis concentrate. <i>Water Science and Technology</i> , 2012 , 66, 837-42	2.2	4
129	Dynamic Response of Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms to Ferric Dosing. <i>Journal of Environmental Engineering, ASCE</i> , 2012 , 138, 510-517	2	9
128	High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7160-2	4.8	48
127	Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. <i>Water Research</i> , 2011 , 45, 1579-86	12.5	109

(2010-2011)

126	Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. <i>Water Research</i> , 2011 , 45, 2281-9	12.5	50
125	Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. <i>Water Research</i> , 2011 , 45, 2415-27	12.5	83
124	Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. <i>Water Research</i> , 2011 , 45, 2751-62	12.5	173
123	Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. <i>Water Research</i> , 2011 , 45, 5381-8	12.5	71
122	Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. <i>Water Research</i> , 2011 , 45, 5695-704	12.5	67
121	Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers. <i>Water Research</i> , 2011 , 45, 6163-72	12.5	46
120	Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. <i>Environmental Microbiology Reports</i> , 2011 , 3, 315-9	3.7	85
119	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41	11	108
118	Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental Science & Environmental Scienc</i>	10.3	39
117	Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants. <i>Journal of Hazardous Materials</i> , 2011 , 185, 1575-81	12.8	60
116	SCORe-CT: a new method for testing effectiveness of sulfide-control chemicals used in sewer systems. <i>Water Science and Technology</i> , 2011 , 64, 2381-8	2.2	15
115	Electrochemical Quartz Crystal Microbalance to Monitor Biofilm Growth and Properties during BioElectrochemical System Inoculation and Load Conditions. <i>ECS Transactions</i> , 2010 , 28, 11-22	1	4
114	Ferrous Salt Demand for Sulfide Control in Rising Main Sewers: Tests on a Laboratory-Scale Sewer System. <i>Journal of Environmental Engineering, ASCE</i> , 2010 , 136, 1180-1187	2	17
113	Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. <i>Water Science and Technology</i> , 2010 , 61, 685-92	2.2	18
112	High current generation coupled to caustic production using a lamellar bioelectrochemical system. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2010 , 44, 4315-21	10.3	163
111	Determining the fraction of pharmaceutical residues in wastewater originating from a hospital. <i>Water Research</i> , 2010 , 44, 605-15	12.5	134
110	Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. <i>Water Research</i> , 2010 , 44, 477-92	12.5	103
109	Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. <i>Water Research</i> , 2010 , 44, 625-37	12.5	251

108	Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. <i>Water Research</i> , 2010 , 44, 2563-71	12.5	66
107	Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. <i>Water Research</i> , 2010 , 44, 2970-80	12.5	298
106	Initial development and structure of biofilms on microbial fuel cell anodes. <i>BMC Microbiology</i> , 2010 , 10, 98	4.5	155
105	Microbial fuel cells operating on mixed fatty acids. <i>Bioresource Technology</i> , 2010 , 101, 1233-8	11	153
104	Understanding the properties of aerobic sludge granules as hydrogels. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1483-93	4.9	84
103	Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. <i>Process Biochemistry</i> , 2009 , 44, 43-53	4.8	32
102	A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. <i>Biodegradation</i> , 2009 , 20, 221-34	4.1	33
101	A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. <i>Biodegradation</i> , 2009 , 20, 339-50	4.1	34
100	Electrochemical regeneration of sulfur loaded electrodes. <i>Electrochemistry Communications</i> , 2009 , 11, 1437-1440	5.1	47
99	Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. <i>Electrochemistry Communications</i> , 2009 , 11, 1752-1755	5.1	317
98	Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 2009, 43, 762-72	12.5	76
97	Development of a model for assessing methane formation in rising main sewers. <i>Water Research</i> , 2009 , 43, 2874-84	12.5	82
96	Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. <i>Water Research</i> , 2009 , 43, 3534-40	12.5	66
95	Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. <i>Water Research</i> , 2009 , 43, 4123-32	12.5	122
94	Impact of nitrate addition on biofilm properties and activities in rising main sewers. <i>Water Research</i> , 2009 , 43, 4225-37	12.5	77
93	Sulfur transformation in rising main sewers receiving nitrate dosage. <i>Water Research</i> , 2009 , 43, 4430-40	12.5	126
		\\	
92	Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. <i>Water Research</i> , 2009 , 43, 4469-78	12.5	121

(2008-2009)

90	Enrichment of denitrifying anaerobic methane oxidizing microorganisms. <i>Environmental Microbiology Reports</i> , 2009 , 1, 377-84	3.7	163
89	Decolorization of azo dyes in bioelectrochemical systems. <i>Environmental Science & Emp; Technology</i> , 2009 , 43, 5137-43	10.3	268
88	Nitrobenzene removal in bioelectrochemical systems. <i>Environmental Science & Environmental Science & E</i>	10.3	174
87	Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. <i>Environmental Science & Environmental Scienc</i>	10.3	112
86	Variation in biofilm structure and activity along the length of a rising main sewer. <i>Water Environment Research</i> , 2009 , 81, 800-8	2.8	25
85	Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2008, 2, 519-27	11.9	233
84	Towards practical implementation of bioelectrochemical wastewater treatment. <i>Trends in Biotechnology</i> , 2008 , 26, 450-9	15.1	921
83	Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. <i>Water Research</i> , 2008 , 42, 1387-96	12.5	160
82	Methane formation in sewer systems. Water Research, 2008, 42, 1421-30	12.5	199
81	Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. <i>Water Research</i> , 2008 , 42, 2166-76	12.5	162
80	Dynamics and dynamic modelling of H2S production in sewer systems. Water Research, 2008, 42, 2527-	38 2.5	114
79	Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42, 3013-24	12.5	361
78	Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. <i>Water Research</i> , 2008 , 42, 4549-61	12.5	106
77	Spontaneous electrochemical removal of aqueous sulfide. <i>Water Research</i> , 2008 , 42, 4965-75	12.5	103
76	Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. <i>Journal of Biotechnology</i> , 2008 , 134, 137-45	3.7	61
75	Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. <i>Environmental Science & Environmental Sci</i>	10.3	168
74	Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. <i>Biodegradation</i> , 2008 , 19, 303-12	4.1	279
73	Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a re/view. <i>Reviews in Environmental Science and Biotechnology</i> , 2008 , 7, 243-254	13.9	28

72	The anode potential regulates bacterial activity in microbial fuel cells. <i>Applied Microbiology and Biotechnology</i> , 2008 , 78, 409-18	5.7	314
71	Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. <i>Biotechnology and Bioengineering</i> , 2008 , 100, 529-41	4.9	175
70	Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. <i>Process Biochemistry</i> , 2008 , 43, 968-977	4.8	18
69	Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer. <i>Environmental Engineering Research</i> , 2008 , 13, 125-130	3.6	6
68	Using Anoxygenic Photosynthetic Bacteria for the Removal of Sulfide from Wastewater. <i>Advances in Photosynthesis and Respiration</i> , 2008 , 437-460	1.7	8
67	Modeling the Aerobic Metabolism of Polyphosphate-Accumulating Organisms Enriched with Propionate as a Carbon Source. <i>Water Environment Research</i> , 2007 , 79, 2477-2486	2.8	21
66	Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. <i>Electrochimica Acta</i> , 2007 , 53, 598-603	6.7	224
65	Microbial ecology meets electrochemistry: electricity-driven and driving communities. <i>ISME Journal</i> , 2007 , 1, 9-18	11.9	385
64	Elucidation of metabolic pathways in glycogen-accumulating organisms with in vivo 13C nuclear magnetic resonance. <i>Environmental Microbiology</i> , 2007 , 9, 2694-706	5.2	22
63	Determination of growth rate and yield of nitrifying bacteria by measuring carbon dioxide uptake rate. <i>Water Environment Research</i> , 2007 , 79, 2437-45	2.8	61
62	METABOLIC MODEL OF THE AEROBIC METABOLISM OF POLYPHOSPHATE ACCUMULATING ORGANISMS WITH A PROPIONATE CARBON SOURCE. <i>Proceedings of the Water Environment Federation</i> , 2007 , 2007, 1243-1255		
61	Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. <i>Water Research</i> , 2007 , 41, 826-34	12.5	166
60	Engineered ecosystem for sustainable on-site wastewater treatment. Water Research, 2007, 41, 1823-3	112.5	16
59	Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. <i>Water Research</i> , 2007 , 41, 3033-42	12.5	273
58	Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. <i>Water Research</i> , 2007 , 41, 1885-96	12.5	54
57	Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation. <i>Water Research</i> , 2007 , 41, 2590-8	12.5	45
56	Advances in enhanced biological phosphorus removal: from micro to macro scale. <i>Water Research</i> , 2007 , 41, 2271-300	12.5	805
55	Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. <i>Water Research</i> , 2007 , 41, 4646-56	12.5	66

(2005-2007)

54	Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source. <i>Journal of Biotechnology</i> , 2007 , 129, 489-97	3.7	65
53	Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. <i>Environmental Science & Environmental Science</i>	10.3	205
52	Stoichiometric and kinetic characterisation of Nitrobacter in mixed culture by decoupling the growth and energy generation processes. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 1176-88	4.9	56
51	Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 830-9	4.9	153
50	Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 2767-2778	2.9	89
49	The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture. <i>Environmental Science & Environmental Science &</i>	10.3	154
48	Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. <i>Journal of Biotechnology</i> , 2006 , 122, 62-72	3.7	119
47	Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. <i>Journal of Biotechnology</i> , 2006 , 123, 22-32	3.7	142
46	Stoichiometric and kinetic characterisation of Nitrosomonas sp. in mixed culture by decoupling the growth and energy generation processes. <i>Journal of Biotechnology</i> , 2006 , 126, 342-56	3.7	34
45	Microbial fuel cells: methodology and technology. <i>Environmental Science & Environmental Science & Env</i>	10.3	4214
45	40, 5181-92 Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using	10.3	4214 128
	40, 5181-92 Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating		128
44	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. <i>Water Research</i> , 2006 , 40, 3838-48 Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill	12.5	128
44	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. <i>Water Research</i> , 2006 , 40, 3838-48 Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. <i>Bioresource Technology</i> , 2006 ,	12.5 12.5	128 169
44 43 42	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. <i>Water Research</i> , 2006 , 40, 3838-48 Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. <i>Bioresource Technology</i> , 2006 , 97, 459-68 Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. <i>Enzyme and Microbial Technology</i> , 2006 , 39, 1392-1398	12.5 12.5	128 169 300
44 43 42 41	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. <i>Water Research</i> , 2006 , 40, 3838-48 Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. <i>Bioresource Technology</i> , 2006 , 97, 459-68 Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. <i>Enzyme and Microbial Technology</i> , 2006 , 39, 1392-1398 Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology. <i>Journal of Hazardous Materials</i> , 2006 , 138, 160-8	12.5 12.5 11 3.8	128 169 300 29
44 43 42 41 40	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Research, 2006, 40, 2765-75 Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Research, 2006, 40, 3838-48 Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology, 2006, 97, 459-68 Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. Enzyme and Microbial Technology, 2006, 39, 1392-1398 Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology. Journal of Hazardous Materials, 2006, 138, 160-8 Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Research, 2005, 39, 171-83	12.5 12.5 11 3.8	128 169 300 29

36	Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 43-53	4.9	141
35	Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 162-8	4.9	172
34	Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8683-91	4.8	138
33	Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 588-96	4.8	192
32	Improved understanding of the interactions and complexities of biological nitrogen and phosphorus removal processes. <i>Reviews in Environmental Science and Biotechnology</i> , 2004 , 3, 265-272	13.9	13
31	Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. <i>Biotechnology and Bioengineering</i> , 2004 , 86, 445-57	4.9	22
30	Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater. <i>Biotechnology and Bioengineering</i> , 2004 , 87, 14-23	4.9	9
29	Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. <i>Biotechnology and Bioengineering</i> , 2004 , 88, 135-47	4.9	54
28	The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. <i>Water Research</i> , 2004 , 38, 1390-404	12.5	135
27	Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 92-105	4.9	196
26	Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 397-404	4.9	132
25	Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 482-95	4.9	78
24	Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 140-8	4.9	147
23	Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 293-302	4.9	49
22	Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. <i>Biotechnology and Bioengineering</i> , 2003 , 84, 170-8	4.9	338
21	Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. <i>FEMS Microbiology Ecology</i> , 2003 , 45, 253-61	4.3	34
20	Online titrimetric and off-gas analysis for examining nitrification processes in wastewater treatment. <i>Water Research</i> , 2003 , 37, 2678-90	12.5	20
19	Optimization and Control of Nitrogen Removal Activated Sludge Processes: A Review of Recent Developments. <i>Focus on Biotechnology</i> , 2003 , 187-227		4

(1996-2003)

18	Greenhouse gas production in wastewater treatment: process selection is the major factor. <i>Water Science and Technology</i> , 2003 , 47, 43-8	2.2	2
17	A decision support system for selecting sanitation systems in developing countries. <i>Socio-Economic Planning Sciences</i> , 2002 , 36, 267-290	3.7	26
16	Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. <i>Biotechnology and Bioengineering</i> , 2002 , 80, 277-9	4.9	62
15	Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. <i>Reviews in Environmental Science and Biotechnology</i> , 2002 , 1, 83-	9 1 3.9	13
14	Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 3353-3364	2.9	336
13	Modern scientific methods and their potential in wastewater science and technology. <i>Water Research</i> , 2002 , 36, 370-93	12.5	53
12	Analysis of biological wastewater treatment processes using multicomponent gas phase mass balancing. <i>Biotechnology and Bioengineering</i> , 2001 , 76, 361-75	4.9	25
11	Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 2001, 35, 172	2 3⊦2 .5	118
10	Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1175-82	4.8	626
9	Study of factors affecting simultaneous nitrification and denitrification (SND). <i>Water Science and Technology</i> , 1999 , 39, 61-68	2.2	139
8	Study of factors affecting simultaneous nitrification and denitrification (SND). <i>Water Science and Technology</i> , 1999 , 39, 61	2.2	133
7	Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 507-15	4.9	33
6	Mathematical modelling of prefermenters II Model development and verification. <i>Water Research</i> , 1999 , 33, 2757-2768	12.5	43
5	Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge. <i>Water Science and Technology</i> , 1999 , 39, 45-52	2.2	9
4	Microbiology of a nitrite-oxidizing bioreactor. Applied and Environmental Microbiology, 1998, 64, 1878-8	3 3 4.8	126
3	Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. <i>Water Science and Technology</i> , 1998 , 37, 567-571	2.2	13
2	Model development and full scale validation for anaerobic treatment of protein and fat based wastewater. <i>Water Science and Technology</i> , 1997 , 36, 423-431	2.2	8
1	Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. <i>Water Research</i> , 1996 , 30, 277-284	12.5	301