Jurg Keller

List of Publications by Citations

Source: https://exaly.com/author-pdf/859295/jurg-keller-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,137 87 159 215 h-index g-index citations papers 28,839 225 9.2 7.05 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
215	Microbial fuel cells: methodology and technology. <i>Environmental Science & Technology</i> , 2006 , 40, 5181-92	10.3	4214
214	Towards practical implementation of bioelectrochemical wastewater treatment. <i>Trends in Biotechnology</i> , 2008 , 26, 450-9	15.1	921
213	Advances in enhanced biological phosphorus removal: from micro to macro scale. <i>Water Research</i> , 2007 , 41, 2271-300	12.5	805
212	Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. <i>Nature</i> , 2013 , 500, 567-70	50.4	750
211	Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1175-82	4.8	626
21 0	Microbial ecology meets electrochemistry: electricity-driven and driving communities. <i>ISME Journal</i> , 2007 , 1, 9-18	11.9	385
209	Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42, 3013-24	12.5	361
208	Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. <i>Biotechnology and Bioengineering</i> , 2003 , 84, 170-8	4.9	338
207	Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 3353-3364	2.9	336
206	Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. <i>Electrochemistry Communications</i> , 2009 , 11, 1752-1755	5.1	317
205	The anode potential regulates bacterial activity in microbial fuel cells. <i>Applied Microbiology and Biotechnology</i> , 2008 , 78, 409-18	5.7	314
204	Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. <i>Water Research</i> , 1996 , 30, 277-284	12.5	301
203	Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. <i>Bioresource Technology</i> , 2006 , 97, 459-68	11	300
202	Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. <i>Water Research</i> , 2010 , 44, 2970-80	12.5	298
201	Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. <i>Biodegradation</i> , 2008 , 19, 303-12	4.1	279
200	Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. <i>Water Research</i> , 2007 , 41, 3033-42	12.5	273
199	Decolorization of azo dyes in bioelectrochemical systems. <i>Environmental Science & Environmental Scien</i>	10.3	268

(2009-2012)

198	Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. <i>Water Research</i> , 2012 , 46, 863-72	12.5	253
197	Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. <i>Water Research</i> , 2010 , 44, 625-37	12.5	251
196	Global diversity and biogeography of bacterial communities in wastewater treatment plants. <i>Nature Microbiology</i> , 2019 , 4, 1183-1195	26.6	248
195	Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. <i>Environmental Science & Environmental Science </i>	10.3	234
194	Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2008, 2, 519-27	11.9	233
193	Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. <i>Electrochimica Acta</i> , 2007 , 53, 598-603	6.7	224
192	Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. <i>Environmental Science & Environmental Science</i>	10.3	205
191	Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. <i>Journal of Chromatography A</i> , 2005 , 1070, 131-6	4.5	204
190	Methane formation in sewer systems. Water Research, 2008, 42, 1421-30	12.5	199
189	Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 92-105	4.9	196
188	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13093-13102	13	195
187	Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 588-96	4.8	192
186	Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. <i>Journal of Hazardous Materials</i> , 2015 , 283, 551-7	12.8	190
185	Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. <i>Environmental Science & Environmental Science & Env</i>	10.3	184
184	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	183
183	Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. <i>Environmental Science & Environmental Scie</i>	10.3	178
182	Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. <i>Biotechnology and Bioengineering</i> , 2008 , 100, 529-41	4.9	175
181	Nitrobenzene removal in bioelectrochemical systems. <i>Environmental Science & Environmental Science & E</i>	10.3	174

180	Biofiltration of wastewater treatment plant effluent: effective removal of pharmaceuticals and personal care products and reduction of toxicity. <i>Water Research</i> , 2011 , 45, 2751-62	12.5	173
179	Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 162-8	4.9	172
178	Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. <i>Water Research</i> , 2006 , 40, 3838-48	12.5	169
177	Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. <i>Environmental Science & Environmental Sci</i>	10.3	168
176	Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. <i>Water Research</i> , 2007 , 41, 826-34	12.5	166
175	High current generation coupled to caustic production using a lamellar bioelectrochemical system. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 4315-21	10.3	163
174	Enrichment of denitrifying anaerobic methane oxidizing microorganisms. <i>Environmental Microbiology Reports</i> , 2009 , 1, 377-84	3.7	163
173	Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. <i>Water Research</i> , 2008 , 42, 2166-76	12.5	162
172	Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. <i>Water Research</i> , 2008 , 42, 1387-96	12.5	160
171	Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). <i>Water Research</i> , 2005 , 39, 171-83	12.5	156
170	Initial development and structure of biofilms on microbial fuel cell anodes. <i>BMC Microbiology</i> , 2010 , 10, 98	4.5	155
169	The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture. <i>Environmental Science & Environmental Science &</i>	10.3	154
168	Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 2010, 101, 1233-8	11	153
167	Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 830-9	4.9	153
166	Water engineering. Reducing sewer corrosion through integrated urban water management. <i>Science</i> , 2014 , 345, 812-4	33.3	151
165	Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 140-8	4.9	147
164	Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. <i>Journal of Biotechnology</i> , 2006 , 123, 22-32	3.7	142
163	Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology. <i>Journal of Hazardous Materials</i> , 2006 , 138, 160-8	12.8	141

(2014-2005)

162	Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 43-53	4.9	141	
161	Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 1999 , 39, 61-68	2.2	139	
160	Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8683-91	4.8	138	
159	The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. <i>Water Research</i> , 2005 , 39, 3727-37	12.5	137	
158	The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. <i>Water Research</i> , 2004 , 38, 1390-404	12.5	135	
157	Determining the fraction of pharmaceutical residues in wastewater originating from a hospital. <i>Water Research</i> , 2010 , 44, 605-15	12.5	134	
156	Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 1999 , 39, 61	2.2	133	
155	Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 397-404	4.9	132	
154	Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. <i>Water Research</i> , 2006 , 40, 2765-75	12.5	128	
153	Sulfur transformation in rising main sewers receiving nitrate dosage. Water Research, 2009, 43, 4430-40	12.5	126	
152	Microbiology of a nitrite-oxidizing bioreactor. Applied and Environmental Microbiology, 1998, 64, 1878-83	4.8	126	
151	Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. <i>Water Research</i> , 2016 , 100, 486-495	12.5	125	
150	Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. <i>Water Research</i> , 2009 , 43, 4123-32	12.5	122	
149	Source-separated urine opens golden opportunities for microbial electrochemical technologies. <i>Trends in Biotechnology</i> , 2015 , 33, 214-20	15.1	121	
148	Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. <i>Water Research</i> , 2009 , 43, 4469-78	12.5	121	
147	Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. <i>Journal of Biotechnology</i> , 2006 , 122, 62-72	3.7	119	
146	Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 2001, 35, 1723	3⊦2 .5	118	
145	Phototrophic bacteria for nutrient recovery from domestic wastewater. <i>Water Research</i> , 2014 , 50, 18-26	12.5	115	

144	Dynamics and dynamic modelling of H2S production in sewer systems. Water Research, 2008, 42, 2527-3	3 8 2.5	114
143	Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. <i>Environmental Science & Environmental Scienc</i>	10.3	112
142	Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8485-8493	8.3	111
141	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. <i>Energy and Environmental Science</i> , 2013 , 6, 1291	35.4	110
140	Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. <i>Water Research</i> , 2011 , 45, 1579-86	12.5	109
139	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41	11	108
138	Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 1982-9	10.3	107
137	Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. <i>Water Research</i> , 2008 , 42, 4549-61	12.5	106
136	Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. <i>Water Research</i> , 2010 , 44, 477-92	12.5	103
135	Spontaneous electrochemical removal of aqueous sulfide. Water Research, 2008, 42, 4965-75	12.5	103
134	Surface neutralization and H(2)S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H(2)S concentration. <i>Water Research</i> , 2012 , 46, 4235-45	12.5	102
133	Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. <i>Environment International</i> , 2012 , 45, 99-111	12.9	97
132	Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide. <i>ChemElectroChem</i> , 2016 , 3, 581-591	4.3	94
131	Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. <i>Water Research</i> , 2013 , 47, 6546-57	12.5	92
130	Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation. <i>Water Research</i> , 2015 , 87, 49-58	12.5	90
129	Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 2767-2778	2.9	89
128	Determining the long-term effects of HB concentration, relative humidity and air temperature on concrete sewer corrosion. <i>Water Research</i> , 2014 , 65, 157-69	12.5	86
127	Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. <i>Water Research</i> , 2015 , 69, 173-182	12.5	85

126	Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. <i>Environmental Microbiology Reports</i> , 2011 , 3, 315-9	3.7	85	
125	Understanding the properties of aerobic sludge granules as hydrogels. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1483-93	4.9	84	
124	Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. <i>Water Research</i> , 2011 , 45, 2415-27	12.5	83	
123	Development of a model for assessing methane formation in rising main sewers. <i>Water Research</i> , 2009 , 43, 2874-84	12.5	82	
122	Recovering Nitrogen as a Solid without Chemical Dosing: Bio-Electroconcentration for Recovery of Nutrients from Urine. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 119-124	11	81	
121	Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 482-95	4.9	78	
120	Impact of nitrate addition on biofilm properties and activities in rising main sewers. <i>Water Research</i> , 2009 , 43, 4225-37	12.5	77	
119	Predicting concrete corrosion of sewers using artificial neural network. Water Research, 2016 , 92, 52-60	12.5	76	
118	Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 2009, 43, 762-72	12.5	76	
117	Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. <i>Environmental Science & Technology</i> , 2013 , 47, 11199-205	10.3	75	
116	Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal - A review. <i>Water Research</i> , 2016 , 98, 384-95	12.5	72	
115	Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. <i>Water Research</i> , 2011 , 45, 5381-8	12.5	71	
114	The role of iron in sulfide induced corrosion of sewer concrete. Water Research, 2014, 49, 166-74	12.5	69	
113	Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production. <i>Journal of Environmental Engineering, ASCE</i> , 2013 , 139, 594-601	2	67	
112	Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. <i>Water Research</i> , 2011 , 45, 5695-704	12.5	67	
111	Reductive electrochemical remediation of emerging and regulated disinfection byproducts. <i>Water Research</i> , 2012 , 46, 1705-14	12.5	66	
110	Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. <i>Water Research</i> , 2010 , 44, 2563-71	12.5	66	
109	Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. <i>Water Research</i> , 2009 , 43, 3534-40	12.5	66	

108	Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. <i>Water Research</i> , 2007 , 41, 4646-56	12.5	66
107	Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source. <i>Journal of Biotechnology</i> , 2007 , 129, 489-97	3.7	65
106	Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. <i>Biotechnology and Bioengineering</i> , 2002 , 80, 277-9	4.9	62
105	Role of sulfur during acetate oxidation in biological anodes. <i>Environmental Science & Technology</i> , 2009 , 43, 3839-45	10.3	61
104	Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. <i>Journal of Biotechnology</i> , 2008 , 134, 137-45	3.7	61
103	Determination of growth rate and yield of nitrifying bacteria by measuring carbon dioxide uptake rate. <i>Water Environment Research</i> , 2007 , 79, 2437-45	2.8	61
102	Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants. <i>Journal of Hazardous Materials</i> , 2011 , 185, 1575-81	12.8	60
101	Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. <i>Desalination</i> , 2013 , 309, 97-105	10.3	59
100	A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. <i>Scientific Reports</i> , 2015 , 5, 8706	4.9	58
99	Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. <i>Environmental Science & Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 8084-92	10.3	56
98	Stoichiometric and kinetic characterisation of Nitrobacter in mixed culture by decoupling the growth and energy generation processes. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 1176-88	4.9	56
97	Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. <i>Bioelectrochemistry</i> , 2015 , 102, 56-63	5.6	54
96	Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. <i>Water Research</i> , 2015 , 71, 150-9	12.5	54
95	Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. <i>Water Research</i> , 2007 , 41, 1885-96	12.5	54
94	Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. <i>Biotechnology and Bioengineering</i> , 2004 , 88, 135-47	4.9	54
93	Modern scientific methods and their potential in wastewater science and technology. <i>Water Research</i> , 2002 , 36, 370-93	12.5	53
92	Odor emissions from domestic wastewater: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2017 , 47, 1581-1611	11.1	52
91	Electrochemical Abatement of Hydrogen Sulfide from Waste Streams. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 1555-1578	11.1	52

(2017-2015)

90	Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. <i>Water Research</i> , 2015 , 80, 30-40	12.5	51
89	Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. <i>Water Research</i> , 2011 , 45, 2281-9	12.5	50
88	Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. <i>Biotechnology and Bioengineering</i> , 2003 , 83, 293-302	4.9	49
87	High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7160-2	4.8	48
86	Bioelectrochemical systems: Microbial versus enzymatic catalysis. <i>Electrochimica Acta</i> , 2012 , 82, 165-17	4 6.7	47
85	Electrochemical regeneration of sulfur loaded electrodes. <i>Electrochemistry Communications</i> , 2009 , 11, 1437-1440	5.1	47
84	Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen. <i>Water Research</i> , 2017 , 108, 451-461	12.5	46
83	Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers. <i>Water Research</i> , 2011 , 45, 6163-72	12.5	46
82	A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. <i>Water Research</i> , 2017 , 126, 411-420	12.5	45
81	Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation. <i>Water Research</i> , 2007 , 41, 2590-8	12.5	45
80	Mathematical modelling of prefermenters Model development and verification. <i>Water Research</i> , 1999 , 33, 2757-2768	12.5	43
79	Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation. <i>Chemical Communications</i> , 2019 , 55, 4351-4	1358 1354	41
78	Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. <i>Chemical Engineering Journal</i> , 2017 , 330, 1265-1271	14.7	41
77	Oxidised stainless steel: a very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. <i>Electrochimica Acta</i> , 2015 , 158, 356-360	6.7	41
76	Biodegradability of DBP precursors after drinking water ozonation. Water Research, 2016, 106, 550-561	12.5	39
75	Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental Science & Environmental Science & Environmental Science & Environmental Application and Environmental Science & Environmental Application and Environmental En</i>	10.3	39
74	A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. <i>Water Research</i> , 2015 , 70, 279-87	12.5	37
73	Nutrient removal and energy recovery from high-rate activated sludge processes - Impact of sludge age. <i>Bioresource Technology</i> , 2017 , 245, 1155-1161	11	37

72	Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. <i>Environmental Science & Environmental Science & Environme</i>	10.3	36
71	A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. <i>Water Research</i> , 2018 , 146, 109-117	12.5	36
70	A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. <i>Biodegradation</i> , 2009 , 20, 339-50	4.1	34
69	Stoichiometric and kinetic characterisation of Nitrosomonas sp. in mixed culture by decoupling the growth and energy generation processes. <i>Journal of Biotechnology</i> , 2006 , 126, 342-56	3.7	34
68	Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. <i>FEMS Microbiology Ecology</i> , 2003 , 45, 253-61	4.3	34
67	A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. <i>Biodegradation</i> , 2009 , 20, 221-34	4.1	33
66	Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 507-15	4.9	33
65	Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. <i>Process Biochemistry</i> , 2009 , 44, 43-53	4.8	32
64	Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. <i>RSC Advances</i> , 2015 , 5, 89368-89374	3.7	31
63	Enhancing toxic metal removal from acidified sludge with nitrite addition. <i>Environmental Science & Enhancing Technology</i> , 2015 , 49, 6257-63	10.3	29
62	Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. <i>Microbial Biotechnology</i> , 2015 , 8, 483-9	6.3	29
61	Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. <i>Electrochimica Acta</i> , 2013 , 108, 566-574	6.7	29
60	Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. <i>Enzyme and Microbial Technology</i> , 2006 , 39, 1392-1398	3.8	29
59	Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. <i>Journal of Environmental Management</i> , 2019 , 234, 431-439	7.9	29
58	Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a re/view. <i>Reviews in Environmental Science and Biotechnology</i> , 2008 , 7, 243-254	13.9	28
57	A decision support system for selecting sanitation systems in developing countries. <i>Socio-Economic Planning Sciences</i> , 2002 , 36, 267-290	3.7	26
56	A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. <i>Water Research</i> , 2014 , 59, 229-38	12.5	25
55	Variation in biofilm structure and activity along the length of a rising main sewer. <i>Water Environment Research</i> , 2009 , 81, 800-8	2.8	25

(2007-2001)

54	Analysis of biological wastewater treatment processes using multicomponent gas phase mass balancing. <i>Biotechnology and Bioengineering</i> , 2001 , 76, 361-75	4.9	25	
53	Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction. <i>Electrochimica Acta</i> , 2016 , 213, 66-74	6.7	23	
52	Elucidation of metabolic pathways in glycogen-accumulating organisms with in vivo 13C nuclear magnetic resonance. <i>Environmental Microbiology</i> , 2007 , 9, 2694-706	5.2	22	
51	Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. <i>Biotechnology and Bioengineering</i> , 2004 , 86, 445-57	4.9	22	
50	Effects of surface washing on the mitigation of concrete corrosion under sewer conditions. <i>Cement and Concrete Composites</i> , 2016 , 68, 88-95	8.6	21	
49	Modeling the Aerobic Metabolism of Polyphosphate-Accumulating Organisms Enriched with Propionate as a Carbon Source. <i>Water Environment Research</i> , 2007 , 79, 2477-2486	2.8	21	
48	Online titrimetric and off-gas analysis for examining nitrification processes in wastewater treatment. <i>Water Research</i> , 2003 , 37, 2678-90	12.5	20	
47	Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. <i>Water Research</i> , 2020 , 171, 115396	12.5	20	
46	Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. <i>Water Research</i> , 2015 , 81, 84-91	12.5	19	
45	Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. <i>Biofouling</i> , 2017 , 33, 780-792	3.3	18	
44	Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. <i>Water Science and Technology</i> , 2010 , 61, 685-92	2.2	18	
43	Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. <i>Process Biochemistry</i> , 2008 , 43, 968-977	4.8	18	
42	Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells. <i>Bioelectrochemistry</i> , 2017 , 118, 62-69	5.6	17	
41	Prediction of concrete corrosion in sewers with hybrid Gaussian processes regression model. <i>RSC Advances</i> , 2017 , 7, 30894-30903	3.7	17	
40	Ferrous Salt Demand for Sulfide Control in Rising Main Sewers: Tests on a Laboratory-Scale Sewer System. <i>Journal of Environmental Engineering, ASCE</i> , 2010 , 136, 1180-1187	2	17	
39	Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16	
38	Long-term field test of an electrochemical method for sulfide removal from sewage. <i>Water Research</i> , 2012 , 46, 3085-93	12.5	16	
37	Engineered ecosystem for sustainable on-site wastewater treatment. Water Research, 2007, 41, 1823-3	3112.5	16	

36	Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture. <i>Environmental Science & Environmental Science & Environment</i>	10.3	15
35	SCORe-CT: a new method for testing effectiveness of sulfide-control chemicals used in sewer systems. <i>Water Science and Technology</i> , 2011 , 64, 2381-8	2.2	15
34	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. <i>Water Research</i> , 2020 , 174, 115627	12.5	14
33	Improved understanding of the interactions and complexities of biological nitrogen and phosphorus removal processes. <i>Reviews in Environmental Science and Biotechnology</i> , 2004 , 3, 265-272	13.9	13
32	Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. <i>Reviews in Environmental Science and Biotechnology</i> , 2002 , 1, 83-9	9 7 3.9	13
31	Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. <i>Water Science and Technology</i> , 1998 , 37, 567-571	2.2	13
30	Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study. <i>Science of the Total Environment</i> , 2016 , 565, 616-625	10.2	13
29	Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system. <i>Electrochemistry Communications</i> , 2018 , 89, 14-18	5.1	12
28	Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes. <i>Science of the Total Environment</i> , 2016 , 550, 95-102	10.2	11
27	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. <i>Water Research</i> , 2019 , 165, 114996	12.5	11
26	Fully reversible current driven by a dual marine photosynthetic microbial community. <i>Bioresource Technology</i> , 2015 , 195, 248-53	11	10
25	Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. <i>Photosynthesis Research</i> , 2016 , 127, 347-54	3.7	9
24	Dynamic Response of Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms to Ferric Dosing. <i>Journal of Environmental Engineering, ASCE</i> , 2012 , 138, 510-517	2	9
23	Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater. <i>Biotechnology and Bioengineering</i> , 2004 , 87, 14-23	4.9	9
22	Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge. <i>Water Science and Technology</i> , 1999 , 39, 45-52	2.2	9
21	Anodic reactivity of ferrous sulfide precipitates changing over time due to particulate speciation. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2013 , 47, 12366-73	10.3	8
20	Model development and full scale validation for anaerobic treatment of protein and fat based wastewater. <i>Water Science and Technology</i> , 1997 , 36, 423-431	2.2	8
19	Effective removal of MIB and geosmin using MBBR for drinking water treatment. <i>Water Research</i> , 2019 , 149, 440-447	12.5	8

(2007-2008)

18	Using Anoxygenic Photosynthetic Bacteria for the Removal of Sulfide from Wastewater. <i>Advances in Photosynthesis and Respiration</i> , 2008 , 437-460	1.7	8	
17	Long-term performance of enhanced-zero valent iron for drinking water treatment: A lab-scale study. <i>Chemical Engineering Journal</i> , 2017 , 315, 124-131	14.7	7	
16	Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer. <i>Environmental Engineering Research</i> , 2008 , 13, 125-130	3.6	6	
15	Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. <i>Water Research</i> , 2019 , 157, 463-471	12.5	4	
14	Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	4	
13	Electrochemical Quartz Crystal Microbalance to Monitor Biofilm Growth and Properties during BioElectrochemical System Inoculation and Load Conditions. <i>ECS Transactions</i> , 2010 , 28, 11-22	1	4	
12	Evaluating a strategy for maintaining nitrifier activity during long-term starvation in a moving bed biofilm reactor (MBBR) treating reverse osmosis concentrate. <i>Water Science and Technology</i> , 2012 , 66, 837-42	2.2	4	
11	Optimization and Control of Nitrogen Removal Activated Sludge Processes: A Review of Recent Developments. <i>Focus on Biotechnology</i> , 2003 , 187-227		4	
10	Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. <i>Water Research</i> , 2020 , 184, 116179	12.5	4	
9	Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor. <i>Water Science and Technology</i> , 2016 , 73, 1052-60	2.2	4	
8	Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction. <i>Scientific Reports</i> , 2016 , 6, 39795	4.9	4	
7	The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. <i>Journal of Hazardous Materials</i> , 2021 , 402, 124051	12.8	4	
6	Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. <i>Chemosphere</i> , 2021 , 291, 132723	8.4	3	
5	Selective Extraction of Medium-Chain Carboxylic Acids by Electrodialysis and Phase Separation. <i>ACS Omega</i> , 2021 , 6, 7841-7850	3.9	2	
4	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. <i>Water Research</i> , 2021 , 205, 117694	12.5	2	
3	Greenhouse gas production in wastewater treatment: process selection is the major factor. <i>Water Science and Technology</i> , 2003 , 47, 43-8	2.2	2	
2	Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation <i>Journal of Hazardous Materials</i> , 2022 , 434, 128886	12.8	0	
1	METABOLIC MODEL OF THE AEROBIC METABOLISM OF POLYPHOSPHATE ACCUMULATING ORGANISMS WITH A PROPIONATE CARBON SOURCE. <i>Proceedings of the Water Environment Federation</i> , 2007 , 2007, 1243-1255			