Chengchun Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592627/publications.pdf Version: 2024-02-01

		623574	752573
23	1,224	14	20
papers	citations	h-index	g-index
23	23	23	1086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?. Environmental Science & Technology, 2018, 52, 11276-11284.	4.6	517
2	A new insight into Fenton and Fenton-like processes for water treatment. Journal of Hazardous Materials, 2010, 174, 813-817.	6.5	142
3	Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter. Environmental Science & Technology, 2017, 51, 479-487.	4.6	80
4	Does Soluble Mn(III) Oxidant Formed in Situ Account for Enhanced Transformation of Triclosan by Mn(VII) in the Presence of Ligands?. Environmental Science & Technology, 2018, 52, 4785-4793.	4.6	76
5	Kinetics of Oxidation of lodide (I [–]) and Hypoiodous Acid (HOI) by Peroxymonosulfate (PMS) and Formation of Iodinated Products in the PMS/I [–] /NOM System. Environmental Science and Technology Letters, 2017, 4, 76-82.	3.9	73
6	Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Research, 2018, 131, 208-217.	5.3	64
7	A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. Journal of Hazardous Materials, 2013, 250-251, 76-81.	6.5	47
8	An overview of bromate formation in chemical oxidation processes: Occurrence, mechanism, influencing factors, risk assessment, and control strategies. Chemosphere, 2019, 237, 124521.	4.2	44
9	Transformation of phenolic compounds by peroxymonosulfate in the presence of iodide and formation of iodinated aromatic products. Chemical Engineering Journal, 2018, 335, 855-864.	6.6	38
10	Transformation of Methylparaben by aqueous permanganate in the presence of iodide: Kinetics, modeling, and formation of iodinated aromatic products. Water Research, 2018, 135, 75-84.	5.3	29
11	Transformation of iodide by Fe(II) activated peroxydisulfate. Journal of Hazardous Materials, 2019, 373, 519-526.	6.5	21
12	Quantitatively assessing the role played by carbonate radicals in bromate formation by ozonation. Journal of Hazardous Materials, 2019, 363, 428-438.	6.5	20
13	Unexpected degradation and deiodination of diatrizoate by the Cu(II)/S(IV) system under anaerobic conditions. Water Research, 2021, 198, 117137.	5.3	17
14	Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA. Science of the Total Environment, 2021, 792, 148247.	3.9	17
15	Effects of Dracontomelon duperreanum Leaf Litter on the Growth and Photosynthesis of Microcystis aeruginosa. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 690-694.	1.3	12
16	Fe(II)-activated persulfate oxidation to degrade iopamidol in water: parameters optimization and degradation paths. Scientific Reports, 2020, 10, 21548.	1.6	8
17	Formation of nitrosated and nitrated aromatic products of concerns in the treatment of phenols by the combination of peroxymonosulfate and hydroxylamine. Chemosphere, 2021, 282, 131057.	4.2	7
18	Dominating Role of Ionic Strength in the Sedimentation of Nano-TiO ₂ in Aquatic Environments. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	5

CHENGCHUN JIANG

#	Article	IF	CITATIONS
19	A Trickle Bed Electrochemical Reactor for Generation of Hydrogen Peroxide and Degradation of an Azo Dye in Water. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	4
20	Effect of the pH values on growth of Microcystis aeruginosa. , 2011, , .		2
21	Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	1
22	The Highly Efficient Degradation on Nitrobenzene by Using Nano-copper-cobalt Bimetallic Oxide as Heterogeneous Fenton Catalysts: Efficiency, Dynamic and Mechanism. IOP Conference Series: Earth and Environmental Science, 2021, 687, 012131.	0.2	0
23	Formation of iodinated products in Fe (II)/peroxydisulfate (PDS) system. Water Science and Technology: Water Supply, 2021, 21, 1016-1024.	1.0	0