Zhen Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592496/publications.pdf

Version: 2024-02-01

4988 2543 30,623 262 96 167 citations h-index g-index papers 272 272 272 24398 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioresponsive materials. Nature Reviews Materials, 2017, 2, .	23.3	1,117
2	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14, 89-97.	15.6	725
3	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	3.3	655
4	Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. Nano Letters, 2016, 16, 2334-2340.	4.5	609
5	ATP-triggered anticancer drug delivery. Nature Communications, 2014, 5, 3364.	5 . 8	571
6	Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nature Nanotechnology, 2019, 14, 799-809.	15.6	555
7	Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 2017, 17, 928-937.	4.5	548
8	Selfâ€Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9 for Genome Editing. Angewandte Chemie - International Edition, 2015, 54, 12029-12033.	7.2	517
9	Tailoring nanocarriers for intracellular protein delivery. Chemical Society Reviews, 2011, 40, 3638.	18.7	504
10	Anticancer Plateletâ€Mimicking Nanovehicles. Advanced Materials, 2015, 27, 7043-7050.	11.1	497
11	Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98, 19-34.	6.6	496
12	Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.	5.8	466
13	Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6, 12273-12286.	2.8	456
14	In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine, 2018, 10, .	5.8	439
15	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
16	Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano, 2013, 7, 4194-4201.	7. 3	395
17	A novel intracellular protein delivery platform based on single-protein nanocapsules. Nature Nanotechnology, 2010, 5, 48-53.	15.6	394
18	In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nature Biomedical Engineering, 2017, 1, .	11.6	390

#	Article	IF	Citations
19	Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 2014, 194, 1-19.	4.8	361
20	Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery. ACS Nano, 2013, 7, 6758-6766.	7.3	356
21	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	11.6	353
22	Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 2014, 43, 3595.	18.7	338
23	Advances in liquid metals for biomedical applications. Chemical Society Reviews, 2018, 47, 2518-2533.	18.7	332
24	Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules, 2017, 18, 649-673.	2.6	316
25	Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Materials Today, 2016, 19, 274-283.	8.3	308
26	A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, .	5. 6	300
27	Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery. Journal of the American Chemical Society, 2014, 136, 14722-14725.	6.6	295
28	Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells. Advanced Materials, 2019, 31, e1900192.	11.1	291
29	Inflammationâ€Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Antiâ€PD1 Antibody. Advanced Materials, 2016, 28, 8912-8920.	11.1	286
30	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	7.3	279
31	Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. ACS Nano, 2016, 10, 8956-8963.	7.3	275
32	H ₂ O ₂ -Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620.	7. 3	255
33	Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano, 2018, 12, 5995-6005.	7.3	253
34	Gel–Liposomeâ€Mediated Coâ€Delivery of Anticancer Membraneâ€Associated Proteins and Smallâ€Molecule Drugs for Enhanced Therapeutic Efficacy. Advanced Functional Materials, 2014, 24, 2295-2304.	7.8	252
35	Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563.	23.0	247
36	Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127, 106-118.	6.6	242

#	Article	IF	CITATIONS
37	Local generation of hydrogen for enhanced photothermal therapy. Nature Communications, 2018, 9, 4241.	5.8	239
38	Advances in Antimicrobial Microneedle Patches for Combating Infections. Advanced Materials, 2020, 32, e2002129.	11.1	237
39	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
40	Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Science Advances, 2019, 5, eaaw6870.	4.7	228
41	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	4.5	220
42	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	11.1	220
43	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	11.6	220
44	Photo-Cross-Linked Scaffold with Kartogenin-Encapsulated Nanoparticles for Cartilage Regeneration. ACS Nano, 2016, 10, 1292-1299.	7.3	215
45	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	7.3	207
46	Advances in transdermal insulin delivery. Advanced Drug Delivery Reviews, 2019, 139, 51-70.	6.6	202
47	Furinâ€Mediated Sequential Delivery of Anticancer Cytokine and Smallâ€Molecule Drug Shuttled by Graphene. Advanced Materials, 2015, 27, 1021-1028.	11.1	199
48	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. ACS Nano, 2015, 9, 9407-9415.	7.3	196
49	PDâ€1 Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	11.1	196
50	Microneedles Integrated with Pancreatic Cells and Synthetic Glucoseâ€Signal Amplifiers for Smart Insulin Delivery. Advanced Materials, 2016, 28, 3115-3121.	11.1	193
51	Cardiac cell–integrated microneedle patch for treating myocardial infarction. Science Advances, 2018, 4, eaat9365.	4.7	192
52	Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 2018, 14, 86-93.	3.9	184
53	A Therapeutic Microneedle Patch Made from Hair-Derived Keratin for Promoting Hair Regrowth. ACS Nano, 2019, 13, 4354-4360.	7.3	184
54	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. Advanced Materials, 2016, 28, 9573-9580.	11.1	182

#	Article	IF	Citations
55	Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Letters, 2017, 17, 2138-2145.	4.5	179
56	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	3.9	177
57	Enhanced Anticancer Efficacy by ATPâ€Mediated Liposomal Drug Delivery. Angewandte Chemie - International Edition, 2014, 53, 5815-5820.	7.2	175
58	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Letters, 2018, 18, 5716-5725.	4.5	172
59	Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nature Biomedical Engineering, 2021, 5, 1038-1047.	11.6	164
60	Macrophage-Specific <i>in Vivo</i> Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles. ACS Nano, 2018, 12, 994-1005.	7.3	163
61	Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3687-3692.	3.3	163
62	Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nature Biomedical Engineering, 2018, 2, 17-26.	11.6	161
63	Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials, 2011, 32, 5223-5230.	5.7	159
64	ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials, 2015, 50, 67-74.	5.7	159
65	Detection of Mercury Ion by Infrared Fluorescent Protein and Its Hydrogel-Based Paper Assay. Analytical Chemistry, 2011, 83, 2324-2329.	3.2	157
66	Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano, 2017, 11, 9223-9230.	7.3	157
67	Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047.	4.6	151
68	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
69	Bioinspired and Biomimetic Nanomedicines. Accounts of Chemical Research, 2019, 52, 1255-1264.	7.6	149
70	Tumor Microenvironment-Mediated Construction and Deconstruction of Extracellular Drug-Delivery Depots. Nano Letters, 2016, 16, 1118-1126.	4.5	148
71	A Dualâ€Bioresponsive Drugâ€Delivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade. Advanced Materials, 2019, 31, e1806957.	11.1	145
72	Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 2018, 9, 4092.	5.8	142

#	Article	IF	Citations
73	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	11.1	141
74	Protein Nanocapsule Weaved with Enzymatically Degradable Polymeric Network. Nano Letters, 2009, 9, 4533-4538.	4.5	139
75	Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation. Advanced Materials, 2020, 32, e1902004.	11.1	138
76	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	7.8	137
77	Sequentially Site-Specific Delivery of Thrombolytics and Neuroprotectant for Enhanced Treatment of Ischemic Stroke. ACS Nano, 2019, 13, 8577-8588.	7.3	135
78	Platelet for drug delivery. Current Opinion in Biotechnology, 2019, 58, 81-91.	3.3	132
79	Bio-Inspired Synthetic Nanovesicles for Glucose-Responsive Release of Insulin. Biomacromolecules, 2014, 15, 3495-3502.	2.6	130
80	Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16, 933-941.	15.6	130
81	Advances in drug delivery for post-surgical cancer treatment. Biomaterials, 2019, 219, 119182.	5.7	129
82	Stimuli-responsive transdermal microneedle patches. Materials Today, 2021, 47, 206-222.	8.3	129
83	Programmable nanomedicine: synergistic and sequential drug delivery systems. Nanoscale, 2015, 7, 3381-3391.	2.8	126
84	Red Blood Cells for Glucoseâ€Responsive Insulin Delivery. Advanced Materials, 2017, 29, 1606617.	11.1	126
85	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
86	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	6.6	125
87	Dual targeted nanocarrier for brain ischemic stroke treatment. Journal of Controlled Release, 2016, 233, 64-71.	4.8	124
88	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
89	Advances of injectable hydrogel-based scaffolds for cartilage regeneration. International Journal of Energy Production and Management, 2019, 6, 129-140.	1.9	120
90	Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived Extracellular Vesicles. Matter, 2020, 3, 287-301.	5.0	117

#	Article	IF	CITATIONS
91	Bioresponsive Microneedles with a Sheath Structure for H ₂ O ₂ and pH Cascadeâ€Triggered Insulin Delivery. Small, 2018, 14, e1704181.	5.2	113
92	Glucose-responsive insulin by molecular and physical design. Nature Chemistry, 2017, 9, 937-944.	6.6	106
93	Leveraging Engineering of Cells for Drug Delivery. Accounts of Chemical Research, 2018, 51, 668-677.	7.6	106
94	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104
95	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	5. 2	104
96	Bioresponsive Protein Complex of aPD1 and aCD47 Antibodies for Enhanced Immunotherapy. Nano Letters, 2019, 19, 4879-4889.	4.5	103
97	Endoprotease-Mediated Intracellular Protein Delivery Using Nanocapsules. ACS Nano, 2011, 5, 1385-1394.	7.3	99
98	Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano, 2019, 13, 6540-6549.	7.3	99
99	Cryo-shocked cancer cells for targeted drug delivery and vaccination. Science Advances, 2020, 6, .	4.7	99
100	Clickable Protein Nanocapsules for Targeted Delivery of Recombinant p53 Protein. Journal of the American Chemical Society, 2014, 136, 15319-15325.	6.6	91
101	Conjugated polymer nanomaterials for theranostics. Acta Pharmacologica Sinica, 2017, 38, 764-781.	2.8	91
102	Biodegradable <i>β</i> â€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	3.9	91
103	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
104	ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy. Advanced Materials, 2021, 33, e2104037.	11.1	89
105	Combretastatin A4 Nanodrugâ€Induced MMP9 Amplification Boosts Tumorâ€Gelective Release of Doxorubicin Prodrug. Advanced Materials, 2019, 31, e1904278.	11.1	88
106	Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 548-564.	3.3	87
107	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
108	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83

#	Article	IF	Citations
109	Ultrasoundâ€Triggered Regulation of Blood Glucose Levels Using Injectable Nanoâ€Network. Advanced Healthcare Materials, 2014, 3, 811-816.	3.9	81
110	Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Accounts of Chemical Research, 2020, 53, 2521-2533.	7.6	81
111	Stimuliâ€responsive delivery of therapeutics for diabetes treatment. Bioengineering and Translational Medicine, 2016, 1, 323-337.	3.9	80
112	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	6.6	80
113	Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today, 2013, 8, 11-20.	6.2	78
114	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
115	Delivery Strategies for Immune Checkpoint Blockade. Advanced Healthcare Materials, 2018, 7, e1800424.	3.9	76
116	Microneedle-Mediated Vaccination: Innovation and Translation. Advanced Drug Delivery Reviews, 2021, 179, 113919.	6.6	76
117	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Research, 2017, 10, 1393-1402.	5.8	74
118	Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine. Biomaterials Science, 2018, 6, 3009-3018.	2.6	72
119	Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs. Biomaterials, 2014, 35, 7194-7203.	5.7	71
120	Hierarchical Nanoassemblies-Assisted Combinational Delivery of Cytotoxic Protein and Antibiotic for Cancer Treatment. Nano Letters, 2018, 18, 2294-2303.	4.5	71
121	ROSâ€Responsive Microneedle Patch for Acne Vulgaris Treatment. Advanced Therapeutics, 2018, 1, 1800035.	1.6	69
122	Spatiotemporal drug delivery using laser-generated-focused ultrasound system. Journal of Controlled Release, 2015, 220, 592-599.	4.8	68
123	Colloidal crystal microneedle patch for glucose monitoring. Nano Today, 2020, 35, 100984.	6.2	68
124	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 2022, 285, 121479.	5.7	68
125	Glucose-Responsive Microneedle Patches for Diabetes Treatment. Journal of Diabetes Science and Technology, 2019, 13, 41-48.	1.3	67
126	Leveraging H ₂ O ₂ Levels for Biomedical Applications. Advanced Biology, 2017, 1, e1700084.	3.0	66

#	Article	IF	CITATIONS
127	Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials, 2020, 237, 119782.	5.7	66
128	Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29512-29517.	3.3	64
129	Bioresponsive transcutaneous patches. Current Opinion in Biotechnology, 2017, 48, 28-32.	3.3	62
130	KO of 5-InsP ₇ kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11968-11973.	3.3	62
131	Red Blood Cells for Drug Delivery. Small Methods, 2017, 1, 1700270.	4.6	62
132	Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Research, 2019, 12, 1539-1545.	5.8	61
133	Advances in bioresponsive closed-loop drug delivery systems. International Journal of Pharmaceutics, 2018, 544, 350-357.	2.6	59
134	Engineering DNA scaffolds for delivery of anticancer therapeutics. Biomaterials Science, 2015, 3, 1018-1024.	2.6	57
135	Advances in transformable drug delivery systems. Biomaterials, 2018, 178, 546-558.	5.7	57
136	Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 2020, 12, 16724-16729.	2.8	57
137	Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. National Science Review, 2022, 9, nwab172.	4.6	57
138	Relay Drug Delivery for Amplifying Targeting Signal and Enhancing Anticancer Efficacy. Advanced Materials, 2017, 29, 1605803.	11.1	56
139	Unraveling the mechanobiology of immune cells. Current Opinion in Biotechnology, 2020, 66, 236-245.	3.3	55
140	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	4.6	54
141	Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics, 2017, 7, 3504-3516.	4.6	54
142	Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discovery Today, 2018, 23, 1126-1138.	3.2	54
143	Progress in transdermal drug delivery systems for cancer therapy. Nano Research, 2020, 13, 1810-1824.	5.8	54
144	Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine, 2014, 9, 1117-1120.	1.7	53

#	Article	IF	CITATIONS
145	Lipid‣ike Nanomaterials for Simultaneous Gene Expression and Silencing In Vivo. Advanced Healthcare Materials, 2014, 3, 1392-1397.	3.9	53
146	Adipocytes as Anticancer Drug Delivery Depot. Matter, 2019, 1, 1203-1214.	5.0	53
147	Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 2019, 10, 3051.	5.8	52
148	pH-Responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo. Chemical Communications, 2014, 50, 4699.	2.2	50
149	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7. 3	50
150	Engineered PD‣1â€Expressing Platelets Reverse Newâ€Onset Type 1 Diabetes. Advanced Materials, 2020, 32, e1907692.	11.1	49
151	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials, 2016, 96, 1-10.	5.7	46
152	ATP-Responsive Drug Delivery Systems. Expert Opinion on Drug Delivery, 2016, 13, 311-314.	2.4	45
153	Advances in Engineering Cells for Cancer Immunotherapy. Theranostics, 2019, 9, 7889-7905.	4.6	44
154	Iron oxide nanoparticles augment the intercellular mitochondrial transfer–mediated therapy. Science Advances, 2021, 7, eabj0534.	4.7	44
155	Conjugated Polymer Fluorescence Probe for Intracellular Imaging of Magnetic Nanoparticles. Macromolecules, 2010, 43, 10348-10354.	2.2	43
156	A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment. Nanoscale, 2015, 7, 12096-12103.	2.8	41
157	Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Applied Materials Today, 2018, 13, 144-157.	2.3	41
158	Probing protease activity by single-fluorescent-protein nanocapsules. Chemical Communications, 2010, 46, 6467.	2.2	39
159	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
160	Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. Small, 2022, 18, .	5.2	39
161	Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10744-10748.	3.3	38
162	Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosensors and Bioelectronics, 2021, 187, 113312.	5.3	38

#	Article	IF	CITATIONS
163	Dual electroluminescence from a single-component light-emitting electrochemical cell, based on water-soluble conjugated polymer. Journal of Applied Polymer Science, 2006, 100, 2930-2936.	1.3	37
164	Hypoxia-Sensitive Materials for Biomedical Applications. Annals of Biomedical Engineering, 2016, 44, 1931-1945.	1.3	37
165	Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomaterials Science, 2019, 7, 860-866.	2.6	37
166	Microneedle Array Patches Integrated with Nanoparticles for Therapy and Diagnosis. Small Structures, 2021, 2, 2000097.	6.9	37
167	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36
168	Advances in engineering local drug delivery systems for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1632.	3.3	35
169	Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Research, 2021, 14, 2689-2696.	5.8	35
170	Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. Nature Communications, 2021, 12, 2773.	5.8	35
171	Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma. Science Advances, 2021, 7, eabg5841.	4.7	35
172	Cold atmospheric plasma delivery for biomedical applications. Materials Today, 2022, 54, 153-188.	8.3	35
173	Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. Biomacromolecules, 2017, 18, 4341-4348.	2.6	33
174	Photoacoustic Drug Delivery. Sensors, 2017, 17, 1400.	2.1	33
175	Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS Nano, 2020, 14, 6878-6886.	7.3	33
176	Strategies of Combination Drug Delivery for Immune Checkpoint Blockades. Advanced Healthcare Materials, 2019, 8, e1801099.	3.9	32
177	Adipocyteâ€Derived Anticancer Lipid Droplets. Advanced Materials, 2021, 33, e2100629.	11.1	32
178	Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Science Advances, 2021, 7, eabg5686.	4.7	32
179	Punching and Electroporation for Enhanced Transdermal Drug Delivery. Theranostics, 2018, 8, 3688-3690.	4.6	31
180	Advances in Anticancer Protein Delivery using Microâ€/Nanoparticles. Particle and Particle Systems Characterization, 2014, 31, 1204-1222.	1.2	30

#	Article	IF	CITATIONS
181	Cancerâ€onâ€aâ€Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. Small, 2021, 17, e2004282.	5.2	30
182	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 2016, 8, 9178-9184.	2.8	29
183	Engineering platelet-mimicking drug delivery vehicles. Frontiers of Chemical Science and Engineering, 2017, 11, 624-632.	2.3	29
184	Delivery Techniques for Enhancing CAR T Cell Therapy against Solid Tumors. Advanced Functional Materials, 2021, 31, 2009489.	7.8	29
185	Injectable Biodegradable Polymeric Complex for Glucose-Responsive Insulin Delivery. ACS Nano, 2021, 15, 4294-4304.	7. 3	29
186	Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4, 157-168.	4.4	29
187	Enzyme-assisted photolithography for spatial functionalization of hydrogels. Lab on A Chip, 2010, 10, 1946.	3.1	28
188	Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles. Cellular and Molecular Bioengineering, 2015, 8, 445-454.	1.0	27
189	Enhanced Antiglioblastoma Efficacy of Neovasculature and Glioma Cells Dual Targeted Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3506-3517.	2.3	27
190	Versatile Protein Nanogels Prepared by In Situ Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 333-343.	1.1	26
191	A size bandpass filter. Nature Nanotechnology, 2017, 12, 1023-1025.	15.6	25
192	Developing Insulin Delivery Devices with Glucose Responsiveness. Trends in Pharmacological Sciences, 2021, 42, 31-44.	4.0	25
193	Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chemical Communications, 2014, 50, 15105-15108.	2.2	23
194	Cancer Immunotherapy: PDâ€1 Blockade Cellular Vesicles for Cancer Immunotherapy (Adv. Mater.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
195	Transdermal Drug Delivery for Hair Regrowth. Molecular Pharmaceutics, 2021, 18, 483-490.	2.3	21
196	Leveraging macrophages for cancer theranostics. Advanced Drug Delivery Reviews, 2022, 183, 114136.	6.6	21
197	Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection. ACS Applied Materials & Drug Interfaces, 2015, 7, 14563-14568.	4.0	20
198	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20

#	Article	IF	CITATIONS
199	Nanomedicine for obesity treatment. Science China Life Sciences, 2018, 61, 373-379.	2.3	20
200	Engineering Protein Delivery Depots for Cancer Immunotherapy. Bioconjugate Chemistry, 2019, 30, 515-524.	1.8	20
201	DNA Extraction from Plant Leaves Using a Microneedle Patch. Current Protocols in Plant Biology, 2020, 5, e20104.	2.8	20
202	Tailoring the physicochemical properties of nanomaterials for immunomodulation. Advanced Drug Delivery Reviews, 2022, 180, 114039.	6.6	19
203	Macroencapsulation Devices for Cell Therapy. Engineering, 2022, 13, 53-70.	3.2	19
204	Photothermal Therapy: Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells (Adv. Mater. 23/2019). Advanced Materials, 2019, 31, 1970166.	11.1	18
205	Cellular Bioparticulates with Therapeutics for Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 702-708.	1.8	17
206	Cargo-encapsulated cells for drug delivery. Science China Life Sciences, 2020, 63, 599-601.	2.3	17
207	Topographical nanostructures for physical sterilization. Drug Delivery and Translational Research, 2021, 11, 1376-1389.	3.0	17
208	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	1.3	17
209	Delivery strategies in treatments of leukemia. Chemical Society Reviews, 2022, 51, 2121-2144.	18.7	17
210	Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis process. Scientific Reports, 2015, 5, 9341.	1.6	16
211	Local delivery of checkpoints antibodies. Human Vaccines and Immunotherapeutics, 2017, 13, 245-248.	1.4	16
212	The potential of a microneedle patch for reducing obesity. Expert Opinion on Drug Delivery, 2018, 15, 431-433.	2.4	16
213	In situ fabrication of organic electrochemical transistors on a microfluidic chip. Nano Research, 2019, 12, 1943-1951.	5.8	16
214	A temperature microsensor for measuring laser-induced heating in gold nanorods. Analytical and Bioanalytical Chemistry, 2015, 407, 719-725.	1.9	15
215	Engineered platelets: Advocates for tumor immunotherapy. Nano Today, 2021, 40, 101281.	6.2	15
216	Leveraging biomaterials for enhancing T cell immunotherapy. Journal of Controlled Release, 2022, 344, 272-288.	4.8	14

#	Article	IF	Citations
217	Rolling circle replication for engineering drug delivery carriers. Therapeutic Delivery, 2015, 6, 765-768.	1.2	13
218	Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles. Methods in Molecular Biology, 2017, 1570, 251-259.	0.4	13
219	Tailoring non-viral delivery vehicles for transporting genome-editing tools. Science China Materials, 2017, 60, 511-515.	3.5	13
220	A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomaterials Science, 2019, 7, 4508-4513.	2.6	12
221	Towards Enhancing Skin Drug Delivery. Advanced Drug Delivery Reviews, 2018, 127, 1-2.	6.6	11
222	Bortezomibâ€Encapsulated Dual Responsive Copolymeric Nanoparticles for Gallbladder Cancer Targeted Therapy. Advanced Science, 2022, 9, e2103895.	5 . 6	11
223	Nanomedicine: Anticancer Plateletâ€Mimicking Nanovehicles (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7014-7014.	11.1	8
224	Strategies for Browning Agent Delivery. Pharmaceutical Research, 2021, 38, 1327-1334.	1.7	8
225	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179, 114032.	6.6	8
226	Cysteine-rich Proteins for Drug Delivery and Diagnosis. Current Medicinal Chemistry, 2019, 26, 1377-1388.	1.2	7
227	Engineering glucose-responsive insulin. Medicine in Drug Discovery, 2019, 3, 100010.	2.3	7
228	Introduction to special issue on "Responsive Materials and Systems: Toward Smart and Precision Medications― Bioengineering and Translational Medicine, 2016, 1, 235-236.	3.9	6
229	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	11.1	6
230	Drug delivery for fighting infectious diseases: a global perspective. Drug Delivery and Translational Research, 2021, 11, 1316-1322.	3.0	6
231	Microneedle-mediated therapy for cardiovascular diseases. Drug Delivery and Translational Research, 2022, 12, 472-483.	3.0	6
232	Drug Delivery: Microneedles Integrated with Pancreatic Cells and Synthetic Glucoseâ€Signal Amplifiers for Smart Insulin Delivery (Adv. Mater. 16/2016). Advanced Materials, 2016, 28, 3223-3223.	11.1	5
233	The inaugural Nano Research Young Innovators (NR45) Award in nanobiotechnology. Nano Research, 2018, 11, 4931-4935.	5.8	5
234	Cell Membrane-Mediated Anticancer Drug Delivery. ACS Symposium Series, 2016, , 197-211.	0.5	4

#	Article	IF	CITATIONS
235	Elastic drug delivery: could treatments be triggered by patient movement?. Nanomedicine, 2016, 11, 323-325.	1.7	4
236	Sprayable gel for postsurgical immunotherapy. Immuno-Oncology Technology, 2019, 2, 11-13.	0.2	4
237	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	5.2	4
238	Nanodevices for cancer vaccination. Nature Materials, 2021, 20, 286-287.	13.3	4
239	Smart oral insulin therapy. Matter, 2021, 4, 3790-3791.	5.0	4
240	Drug Delivery: Gel–Liposomeâ€Mediated Coâ€Delivery of Anticancer Membraneâ€Associated Proteins and Smallâ€Molecule Drugs for Enhanced Therapeutic Efficacy (Adv. Funct. Mater. 16/2014). Advanced Functional Materials, 2014, 24, 2258-2258.	7.8	3
241	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq1	1 0.78431 11.1	14g rgBT /0√
242	Innentitelbild: Anaerobeâ€Inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	1.6	3
243	Tailoring Biomaterials for Metabolic Diseases. Advanced Healthcare Materials, 2019, 8, e1900632.	3.9	3
244	Glucoseâ€Responsive Systems: Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation (Adv. Mater. 13/2020). Advanced Materials, 2020, 32, 2070102.	11.1	3
245	Recent advances in transdermal sensors for glucose monitoring. Current Opinion in Biomedical Engineering, 2021, 20, 100326.	1.8	3
246	Topical and Transdermal Nanomedicines for Cancer Therapy. Bioanalysis, 2019, , 231-251.	0.1	2
247	A prophylactic and a therapeutic against AML. Nature Biomedical Engineering, 2020, 4, 4-5.	11.6	2
248	Toward nanoscopic cellular imaging by X-ray. National Science Review, 2021, 8, nwaa206.	4.6	2
249	Cover Picture: Biomolecular Nanopatterning by Magnetic Electric Lithography (Angew. Chem. Int. Ed.) Tj ETQq1 1	0,784314 7.2	rgBT /Over
250	Drug Delivery: Furinâ€Mediated Sequential Delivery of Anticancer Cytokine and Smallâ€Molecule Drug Shuttled by Graphene (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 958-958.	11.1	1
251	Dual Wavelength-Triggered Gold Nanorods for Anticancer Treatment. Methods in Molecular Biology, 2017, 1570, 195-208.	0.4	1
252	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	7.3	1

#	Article	IF	CITATIONS
253	Treating diabetes with â€~cookies'. Nature Chemical Biology, 2021, , .	3.9	1
254	Modular polymer platform as a novel approach to head and neck cancer therapy. Scientific Reports, 2022, 12, 3592.	1.6	1
255	Titelbild: Biomolecular Nanopatterning by Magnetic Electric Lithography (Angew. Chem. 5/2009). Angewandte Chemie, 2009, 121, 843-843.	1.6	O
256	Titelbild: Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing (Angew. Chem. 41/2015). Angewandte Chemie, 2015, 127, 12045-12045.	1.6	0
257	DNA Nanoclews for Stimuli-Responsive Anticancer Drug Delivery. , 2016, , 141-150.		О
258	Drug Delivery Devices: Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia (Small) Tj ETQq0	0 0 <u>. 19</u> BT /	Overlock 10 T
259	Cyborg Vessel. Matter, 2020, 3, 1393-1395.	5.0	0
260	Cancer Therapy: Adipocyteâ€Derived Anticancer Lipid Droplets (Adv. Mater. 26/2021). Advanced Materials, 2021, 33, 2170198.	11.1	0
261	Advanced vaccine delivery. Advanced Drug Delivery Reviews, 2022, 183, 114170.	6.6	0
262	ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy (Adv. Mater. 49/2021). Advanced Materials, 2021, 33, .	11.1	0