Dieter Spiteller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592176/publications.pdf

Version: 2024-02-01

471509 580821 25 1,128 17 25 citations h-index g-index papers 25 25 25 1501 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria. BMC Microbiology, 2021, 21, 50.	3.3	2
2	Ammonia Production by Streptomyces Symbionts of Acromyrmex Leaf-Cutting Ants Strongly Inhibits the Fungal Pathogen Escovopsis. Microorganisms, 2021, 9, 1622.	3.6	8
3	Desulfatiglans anilini Initiates Degradation of Aniline With the Production of Phenylphosphoamidate and 4-Aminobenzoate as Intermediates Through Synthases and Carboxylases From Different Gene Clusters. Frontiers in Microbiology, 2020, 11, 2064.	3.5	2
4	Environmental and Intestinal Phylum Firmicutes Bacteria Metabolize the Plant Sugar Sulfoquinovose via a 6-Deoxy-6-sulfofructose Transaldolase Pathway. IScience, 2020, 23, 101510.	4.1	32
5	Deacylation of Calciumâ€Dependent Antibiotics from <i>Streptomyces violaceoruber</i> in Coâ€culture with <i>Streptomyces</i> sp. MG7â€G1. ChemBioChem, 2020, 21, 3151-3157.	2.6	1
6	Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium <i>Syntrophorhabdus aromaticivorans</i> . ISME Journal, 2019, 13, 1252-1268.	9.8	43
7	Two enzymes of the acetone degradation pathway of <i>Desulfococcus biacutus</i> : coenzyme B ₁₂ â€dependent 2â€hydroxyisobutyrylâ€CoA mutase and 3â€hydroxybutyrylâ€CoA dehydrogenase. Environmental Microbiology Reports, 2018, 10, 283-292.	. 2.4	6
8	Secondary Metabolites from <i>Escovopsis weberi</i> and Their Role in Attacking the Garden Fungus of Leafâ€Cutting Ants. Chemistry - A European Journal, 2018, 24, 4445-4452.	3.3	46
9	Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Frontiers in Microbiology, 2018, 9, 2792.	3.5	49
10	Incorporation of dietary carotenoids into the fins of yellow- and red-finned Eurasian perch Perca fluviatilis. Limnologica, 2017, 63, 31-35.	1.5	1
11	Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber. Journal of Chemical Ecology, 2017, 43, 806-816.	1.8	8
12	Enzymes involved in the anaerobic degradation of <i>ortho</i> a€phthalate by the nitrateâ€reducing bacterium <i>Azoarcus</i> sp. strain PA01. Environmental Microbiology, 2016, 18, 3175-3188.	3.8	42
13	Divalent Transitionâ€Metalâ€Ion Stress Induces Prodigiosin Biosynthesis in <i>Streptomyces coelicolor</i> M145: Formation of Coeligiosins. Chemistry - A European Journal, 2015, 21, 6027-6032.	3.3	26
14	Entner–Doudoroff pathway for sulfoquinovose degradation in <i>Pseudomonas putida</i> SQ1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4298-305.	7.1	69
15	Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion. Microbiological Research, 2015, 181, 93-104.	5.3	11
16	Genome mining of <i>Streptomyces ambofaciens</i> Biotechnology, 2014, 41, 251-263.	3.0	85
17	Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature, 2014, 507, 114-117.	27.8	105
18	A Single Sfp-Type Phosphopantetheinyl Transferase Plays a Major Role in the Biosynthesis of PKS and NRPS Derived Metabolites in Streptomyces ambofaciens ATCC23877. PLoS ONE, 2014, 9, e87607.	2.5	32

#	Article	IF	CITATION
19	Ralfuranone Thioether Production by the Plant Pathogen <i>Ralstonia solanacearum</i> . ChemBioChem, 2013, 14, 2169-2178.	2.6	28
20	An Unprecedented 1,2â€Shift in the Biosynthesis of the 3â€Aminosalicylate Moiety of Antimycins. ChemBioChem, 2012, 13, 769-773.	2.6	31
21	Volatile Lactones from Streptomycetes Arise via the Antimycin Biosynthetic Pathway. ChemBioChem, 2012, 13, 1635-1644.	2.6	29
22	Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1955-1960.	7.1	167
23	Candicidin-producing <i>Streptomyces</i> support leaf-cutting ants to protect their fungus garden against the pathogenic fungus <i>Escovopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4742-4746.	7.1	256
24	N-(17-Phosphonooxylinolenoyl)glutamine andN-(17-phosphonooxylinoleoyl)glutamine from Insect Gut:Â The First Backbone-Phosphorylated Fatty Acid Derivatives in Nature. Journal of Organic Chemistry, 2004, 69, 1104-1109.	3.2	19
25	N-(17-Acyloxy-acyl)-glutamines: Novel Surfactants from Oral Secretions of Lepidopteran Larvaeâ€. Journal of Organic Chemistry, 2003, 68, 8743-8749.	3.2	30