Feng-Jun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859216/publications.pdf Version: 2024-02-01

FENC-LUN ZHANC

#	Article	IF	CITATIONS
1	Plate-on-plate structured Bi2MoO6/Bi2WO6 heterojunction with high-efficiently gradient charge transfer for decolorization of MB. Separation and Purification Technology, 2013, 113, 1-8.	7.9	93
2	Surface partially oxidized MoS2 nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production. Applied Surface Science, 2019, 487, 734-742.	6.1	91
3	Porous g-C3N4/WO3 photocatalyst prepared by simple calcination for efficient hydrogen generation under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124653.	4.7	49
4	Rapid sonochemical synthesis of irregular nanolaminar-like Bi2WO6 as efficient visible-light-active photocatalysts. Ultrasonics Sonochemistry, 2013, 20, 209-215.	8.2	47
5	Research progress of defective MoS2 for photocatalytic hydrogen evolution. Journal of the Korean Ceramic Society, 2021, 58, 135-147.	2.3	34
6	Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light. Journal of the Korean Ceramic Society, 2019, 56, 284-290.	2.3	28
7	Mo-vacancy induced high performance for photocatalytic hydrogen production over MoS2 nanosheets cocatalyst. Chemical Physics Letters, 2020, 746, 137276.	2.6	22
8	Surface plasmon resonance induced reduction of high quality Ag/graphene composite at water/toluene phase for reduction of H2O2. Applied Surface Science, 2013, 265, 578-584.	6.1	18
9	Synthesis and photocatalytic hydrogen activity of Mo1â^'xS2 nanosheets with controllable Mo vacancies. Journal of Alloys and Compounds, 2021, 876, 160165.	5.5	16
10	Crosslinking modification of a porous metal–organic framework (UIO-66) and hydrogen storage properties. New Journal of Chemistry, 2020, 44, 11164-11171.	2.8	13
11	A novel and simple approach for the synthesis of Fe3O4-graphene composite. Korean Journal of Chemical Engineering, 2012, 29, 989-993.	2.7	12
12	Characterization of Graphene Nanosheets as Electrode Material and Their Performances for Electric Double-Layer Capacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 525-536.	2.1	12
13	Facile formation of Mo-vacancy defective MoS2/CdS nanoparticles enhanced efficient hydrogen production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128743.	4.7	12
14	A novel I-type 0D/0D ZnS@Cu3P heterojunction for photocatalytic hydrogen evolution. Inorganic Chemistry Communication, 2021, 134, 109046.	3.9	11
15	Photocatalytic Degradation of Methyl Orange on Platinum and Palladium Co-doped TiO2 Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 685-691.	0.6	10
16	UV and visible light photodegradation effect on Fe–CNT/TiO2 composite catalysts. Bulletin of Materials Science, 2013, 36, 293-299.	1.7	9
17	In-situ grown rod-shaped Ni(OH)2 between interlayer of g-C3N4 for hydrogen evolution under visible light. Inorganic Chemistry Communication, 2020, 122, 108264.	3.9	9
18	Photoelectrocatalytic Degradation of Methylene Blue Over M-CNT/TiO2(M=Y, Ag, and Pt) Composite Electrodes. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 564-574.	2.1	8

Feng-Jun Zhang

#	Article	IF	CITATIONS
19	Photonic Activity for MB Solution of Metal Oxide/CNT Catalysts Derived from Different Organometallic Compounds. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 127-137.	2.1	8
20	In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution. Journal of the Korean Ceramic Society, 2022, 59, 302-311.	2.3	7
21	Fabrication and performances of MWCNT/TiO2 composites derived from MWCNTs and titanium (IV) alkoxide precursors. Bulletin of Materials Science, 2011, 34, 835-841.	1.7	6
22	Enhanced photocatalytic activity by the tunnel effect of microstructured InVO4/WO3 heterojunctions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 253-261.	1.7	5
23	Preparation and photocatalytic activity of a novel BiOCl/g-C3N4 thin film prepared via spin coating. Journal of the Korean Ceramic Society, 2020, 57, 331-337.	2.3	5
24	Novel NiCo2Se4/Mn0.5Cd0.5S photocatalyst for visible light-driven hydrogen evolution. Journal of the Korean Ceramic Society, 2023, 60, 637-645.	2.3	3
25	Research Progress on Photocatalytic Reduction of CO ₂ Based on CsPbBr ₃ Perovskite Materials. ChemNanoMat, 0, , .	2.8	2
26	Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction. Korean Journal of Chemical Engineering, 2022, 39, 1268-1276.	2.7	1
27	Photocatalytic CO2 Reduction over g-C3N4 Based Materials. Korean Journal of Materials Research, 2020, 30, 581-588.	0.2	0