Chuanliu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8592136/publications.pdf Version: 2024-02-01

Сниллин Ми

#	Article	IF	CITATIONS
1	A Doubly-Quenched Fluorescent Probe for Low-Background Detection of Mitochondrial H ₂ O ₂ . Analytical Chemistry, 2019, 91, 6902-6909.	3.2	71
2	Hybrid Silica–Nanocrystal–Organic Dye Superstructures as Post-Encoding Fluorescent Probes. Angewandte Chemie - International Edition, 2007, 46, 5393-5396.	7.2	70
3	Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides. Nature Chemistry, 2012, 4, 1044-1049.	6.6	63
4	pH-Switchable Fluorescent Probe for Spatially-Confined Visualization of Intracellular Hydrogen Peroxide. Analytical Chemistry, 2016, 88, 5865-5870.	3.2	63
5	Interplay of Chemical Microenvironment and Redox Environment on Thiol–Disulfide Exchange Kinetics. Chemistry - A European Journal, 2011, 17, 10064-10070.	1.7	58
6	Orthogonal Cysteine–Penicillamine Disulfide Pairing for Directing the Oxidative Folding of Peptides. Journal of the American Chemical Society, 2015, 137, 15094-15097.	6.6	56
7	Fluorescent core-shell silicananoparticles as tunable precursors: towards encoding and multifunctional nano-probes. Chemical Communications, 2008, , 750-752.	2.2	49
8	A lysosome-locating and acidic pH-activatable fluorescent probe for visualizing endogenous H ₂ O ₂ in lysosomes. Analyst, The, 2017, 142, 4522-4528.	1.7	49
9	Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. Journal of the American Chemical Society, 2020, 142, 5097-5103.	6.6	48
10	Molecule-scale controlled-release system based on light-responsive silica nanoparticles. Chemical Communications, 2008, , 2662.	2.2	47
11	Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction. Angewandte Chemie - International Edition, 2017, 56, 4458-4463.	7.2	39
12	Broad Control of Disulfide Stability through Microenvironmental Effects and Analysis in Complex Redox Environments. Biomacromolecules, 2013, 14, 2383-2388.	2.6	35
13	CXC-Mediated Cellular Uptake of Miniproteins: Forsaking "Arginine Magic― ACS Chemical Biology, 2018, 13, 3078-3086.	1.6	33
14	Biscysteine-Bearing Peptide Probes To Reveal Extracellular Thiol–Disulfide Exchange Reactions Promoting Cellular Uptake. Analytical Chemistry, 2017, 89, 8501-8508.	3.2	30
15	Plasmon-Enhanced Ultrasensitive Surface Analysis Using Ag Nanoantenna. Analytical Chemistry, 2018, 90, 2018-2022.	3.2	30
16	Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angewandte Chemie - International Edition, 2019, 58, 4880-4885.	7.2	29
17	Artificial disulfide-rich peptide scaffolds with precisely defined disulfide patterns and a minimized number of isomers. Chemical Science, 2017, 8, 2547-2552.	3.7	24
18	The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides. Biomacromolecules, 2015, 16, 2347-2355.	2.6	23

Chuanliu Wu

#	Article	IF	CITATIONS
19	Thioether-Bonded Fluorescent Probes for Deciphering Thiol-Mediated Exchange Reactions on the Cell Surface. Analytical Chemistry, 2017, 89, 937-944.	3.2	21
20	<i>De novo</i> design of constrained and sequence-independent peptide scaffolds with topologically-formidable disulfide connectivities. Chemical Science, 2018, 9, 569-575.	3.7	20
21	Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Langmuir, 2016, 32, 1601-1610.	1.6	19
22	Directed Disulfide Pairing and Folding of Peptides for the De Novo Development of Multicyclic Peptide Libraries. Journal of the American Chemical Society, 2020, 142, 16285-16291.	6.6	19
23	A mini-review and perspective on multicyclic peptide mimics of antibodies. Chinese Chemical Letters, 2018, 29, 1063-1066.	4.8	17
24	POEGMA-based disulfide-containing fluorescent probes for imitating and tracing noninternalization-based intracellular drug delivery. Chemical Communications, 2016, 52, 4533-4536.	2.2	16
25	Proteolytic Unlocking of Ultrastable Twin-Acylhydrazone Linkers for Lysosomal Acid-Triggered Release of Anticancer Drugs. Bioconjugate Chemistry, 2017, 28, 2620-2626.	1.8	16
26	Stabilization of peptides against proteolysis through disulfide-bridged conjugation with synthetic aromatics. Organic and Biomolecular Chemistry, 2017, 15, 1921-1929.	1.5	15
27	Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction. Angewandte Chemie, 2017, 129, 4529-4534.	1.6	15
28	Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries. Journal of the American Chemical Society, 2022, 144, 5116-5125.	6.6	15
29	A facile and general approach for the synthesis of fluorescent silica nanoparticles doped with inert dyes. Science Bulletin, 2011, 56, 3242.	1.7	14
30	Conjugated copolymer–photosensitizer molecular hybrids with broadband visible light absorption for efficient light-harvesting and enhanced singlet oxygen generation. Journal of Materials Chemistry C, 2015, 3, 973-976.	2.7	12
31	A phage display-based strategy for the <i>de novo</i> creation of disulfide-constrained and isomer-free bicyclic peptide affinity reagents. Chemical Communications, 2018, 54, 4029-4032.	2.2	12
32	CdS Quantum Dots as Fluorescence Probes for the Detection of Selenite. Analytical Letters, 2008, 41, 2117-2132.	1.0	11
33	Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries. Bioconjugate Chemistry, 2020, 31, 2085-2091.	1.8	10
34	Stabilizing <i>p</i> â€Dithiobenzyl Urethane Linkers without Rateâ€Limiting Selfâ€Immolation for Traceless Drug Release. ChemMedChem, 2019, 14, 1196-1203.	1.6	9
35	Fast and Selective Reaction of 2-Benzylacrylaldehyde with 1,2-Aminothiol for Stable N-Terminal Cysteine Modification and Peptide Cyclization. Bioconjugate Chemistry, 2021, 32, 2065-2072.	1.8	9
36	An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation. Chemical Science, 2021, 12, 11464-11472.	3.7	9

Chuanliu Wu

#	Article	IF	CITATIONS
37	De novo design and directed folding of disulfide-bridged peptide heterodimers. Nature Communications, 2022, 13, 1539.	5.8	9
38	Tunable accessibility of dye-doped liposomes towards gold nanoparticles for fluorescence sensing of lipopolysaccharide. Analyst, The, 2017, 142, 1084-1090.	1.7	8
39	Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET. Journal of Nanoparticle Research, 2010, 12, 2153-2161.	0.8	7
40	Peptide Macrocycles Developed from Precisely Regulated Multiple Cyclization of Unprotected Peptides. Chemistry - A European Journal, 2017, 23, 15150-15155.	1.7	7
41	Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns. ChemBioChem, 2019, 20, 1514-1518.	1.3	7
42	Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery. Chemical Science, 2022, 13, 7780-7789.	3.7	7
43	Extraordinary Modulation of Disulfide Redoxâ€Responsiveness by Cooperativity of Twinâ€Đisulfide Bonds. Chemistry - A European Journal, 2014, 20, 17507-17514.	1.7	6
44	Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs. Journal of Organic Chemistry, 2020, 85, 11475-11481.	1.7	5
45	Design and Synthesis of Cross-Link-Dense Peptides by Manipulating Regioselective Bisthioether Cross-Linking and Orthogonal Disulfide Pairing. Journal of Organic Chemistry, 2019, 84, 5187-5194.	1.7	4
46	Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angewandte Chemie, 2019, 131, 4934-4939.	1.6	4
47	Metal–Organicâ€Frameworkâ€Templated Polyelectrolyte Nanocapsules for the Encapsulation and Delivery of Smallâ€Molecule–Polymer Conjugates. Chemistry - an Asian Journal, 2016, 11, 1811-1820.	1.7	3
48	Interchain doubly-bridged α-helical peptides for the development of protein binders. Chinese Chemical Letters, 2019, 30, 924-928.	4.8	3
49	Disulfide-Linked/Peptide-Incorporated Macrocycles: Unique Redox-Responsiveness and Application for Intracellular Cargo-Delivery. ChemistrySelect, 2016, 1, 826-830.	0.7	2
50	Multivalent peptides displayed on OEGMA-based copolymers for the modulation of protein–protein interactions. Polymer Chemistry, 2015, 6, 7862-7870.	1.9	1
51	Innenrücktitelbild: Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4701-4701.	1.6	ο