List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/859200/publications.pdf Version: 2024-02-01

		61857	26548
131	11,724	43	107
papers	citations	h-index	g-index
135	135	135	14993
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Toxicity and activity inhibition of metal-organic framework MOF-199 to nitrogen-fixing bacterium Azotobacter vinelandii. Science of the Total Environment, 2022, 813, 151912.	3.9	14
2	Magnetic Fe3O4/TiO2/graphene sponge for the adsorption of methylene blue in aqueous solution. Diamond and Related Materials, 2022, 123, 108811.	1.8	18
3	Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. Chemosphere, 2022, 294, 133702.	4.2	8
4	Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. Chinese Chemical Letters, 2022, 33, 3303-3314.	4.8	9
5	Reversible environmental impacts of iron-based metal-organic framework MIL-53(Fe) on nitrogen-fixing bacterium Azotobacter vinelandii. Journal of Environmental Chemical Engineering, 2022, 10, 107794.	3.3	6
6	Phytotoxicity of VO2 nanoparticles with different sizes to pea seedlings. Ecotoxicology and Environmental Safety, 2022, 242, 113885.	2.9	7
7	Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings. Journal of Hazardous Materials, 2021, 409, 124521.	6.5	30
8	Low toxicity of fluorescent carbon quantum dots to white rot fungus Phanerochaete chrysosporium. Journal of Environmental Chemical Engineering, 2021, 9, 104633.	3.3	9
9	Surface modification mediates the interaction between fullerene and lysozyme: protein structure and antibacterial activity. Environmental Science: Nano, 2021, 8, 76-85.	2.2	13
10	Fluorescent Ag–In–S/ZnS Quantum Dots for Tumor Drainage Lymph Node Imaging In Vivo. ACS Applied Nano Materials, 2021, 4, 1029-1037.	2.4	10
11	Toxicity and environmental impact of multi-walled carbon nanotubes to nitrogen-fixing bacterium Azotobacter chroococcum. Journal of Environmental Chemical Engineering, 2021, 9, 105291.	3.3	10
12	Biocompatible zinc gallogermanate persistent luminescent nanoparticles for fast tumor drainage lymph node imaging in vivo. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111887.	2.5	4
13	Low toxicity of metal-organic framework MOF-199 to bacteria Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials Advances, 2021, 1, 100002.	1.2	8
14	Fe-Based Single-Atom Nanozyme with Superior Peroxidase-Mimicking Activity for Enhanced Ultrasensitive Biosensing. Journal of Nanoscience and Nanotechnology, 2021, 21, 6126-6134.	0.9	3
15	Carbonization reduces the toxicity of metal-organic framework MOF-199 to white-rot fungus Phanerochaete chrysosporium. Journal of Environmental Chemical Engineering, 2021, 9, 106705.	3.3	12
16	Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110658.	2.5	25
17	Carbon nanoparticles suspension injection for photothermal therapy of xenografted human thyroid carcinoma <i>in vivo</i> . MedComm, 2020, 1, 202-210.	3.1	17
18	Carbon Nanoparticles–Fe(II) Complex for Efficient Tumor Inhibition with Low Toxicity by Amplifying Oxidative Stress. ACS Applied Materials & Interfaces, 2020, 12, 29094-29102.	4.0	4

#	Article	IF	CITATIONS
19	Interaction between graphene oxide and nitrogen-fixing bacterium Azotobacter chroococcum: Transformation, toxicity and nitrogen fixation. Carbon, 2020, 160, 5-13.	5.4	25
20	Fast Identification and Quantification of Graphene Oxide in Aqueous Environment by Raman Spectroscopy. Nanomaterials, 2020, 10, 770.	1.9	15
21	Carboxylated graphene oxide-chitosan spheres immobilize Cu2+ in soil and reduce its bioaccumulation in wheat plants. Environment International, 2019, 133, 105208.	4.8	38
22	Research performance and trends of fluorescent carbon nanoparticles: a science citation index expanded-based analysis. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
23	Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environmental Research, 2019, 179, 108779.	3.7	34
24	Biotransformation of Pristine and Oxidized Carbon Nanotubes by the White Rot Fungus Phanerochaete chrysosporium. Nanomaterials, 2019, 9, 1340.	1.9	9
25	Carboxylation as an effective approach to improve the adsorption performance of graphene materials for Cu2+ removal. Science of the Total Environment, 2019, 682, 591-600.	3.9	28
26	Stepwise pH-sensitive and biodegradable polypeptide hybrid micelles for enhanced cellular internalization and efficient nuclear drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 315-324.	2.5	29
27	Fe3O4/SiO2/C nanocomposites for the fenton-like disinfection of Escherichia coli in water. Materials Research Express, 2019, 6, 055032.	0.8	4
28	Advances in the applications of graphene adsorbents: from water treatment to soil remediation. Reviews in Inorganic Chemistry, 2019, 39, 47-76.	1.8	20
29	Chemical reduction of graphene enhances <i>in vivo</i> translocation and photosynthetic inhibition in pea plants. Environmental Science: Nano, 2019, 6, 1077-1088.	2.2	44
30	Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Materials Chemistry and Physics, 2019, 223, 751-757.	2.0	32
31	Fungal transformation of graphene by white rot fungus Phanerochaete chrysosporium. Chemosphere, 2019, 216, 9-18.	4.2	32
32	Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy. Journal of Materials Chemistry B, 2019, 7, 7129-7140.	2.9	19
33	Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus <i>Phanerochaete chrysosporium</i> . RSC Advances, 2018, 8, 5026-5033.	1.7	26
34	Decoloration of methylene blue by heterogeneous Fenton-like oxidation on Fe 3 O 4 /SiO 2 /C nanospheres in neutral environment. Materials Chemistry and Physics, 2018, 213, 231-238.	2.0	39
35	Macrocyclization of Interferon–Poly(α-amino acid) Conjugates Significantly Improves the Tumor Retention, Penetration, and Antitumor Efficacy. Journal of the American Chemical Society, 2018, 140, 1170-1178.	6.6	59
36	Toxicity of graphene oxide to naked oats (Avena sativaÂL.) in hydroponic and soil cultures. RSC Advances, 2018, 8, 15336-15343.	1.7	30

#	Article	IF	CITATIONS
37	A smart cluster paradigm based Mo-containing polyoxometalate as a new therapeutic strategy for tumor-specific photothermal therapy. Science Bulletin, 2018, 63, 877-878.	4.3	3
38	Toxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium. Nanomaterials, 2018, 8, 120.	1.9	22
39	Role of Mn2+ Doping in the Preparation of Core-Shell Structured Fe3O4@upconversion Nanoparticles and Their Applications in T1/T2-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy. Nanomaterials, 2018, 8, 466.	1.9	14
40	Carbon nanoparticles suspension injection for the delivery of doxorubicin: Comparable efficacy and reduced toxicity. Materials Science and Engineering C, 2018, 92, 416-423.	3.8	15
41	Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicology and Environmental Safety, 2018, 162, 225-234.	2.9	19
42	Highâ€Performance Red/Nearâ€ŀR Carbon Dots as Fluorescence Probes for Tumor Imaging <i>In Vivo</i> . ChemistrySelect, 2018, 3, 6374-6381.	0.7	13
43	Effect of reduction degree on the adsorption properties of graphene sponge for dyes. Materials Research Express, 2017, 4, 045008.	0.8	9
44	Harnessing Phosphato-Platinum Bonding Induced Supramolecular Assembly for Systemic Cisplatin Delivery. ACS Applied Materials & Interfaces, 2017, 9, 17757-17768.	4.0	15
45	Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme. Colloids and Surfaces B: Biointerfaces, 2017, 154, 96-103.	2.5	51
46	Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicology Research, 2017, 6, 134-143.	0.9	45
47	Core@shell Fe ₃ O ₄ @Mn ²⁺ -doped NaYF ₄ :Yb/Tm nanoparticles for triple-modality T ₁ /T ₂ -weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Advances, 2017, 7, 37929-37937.	1.7	21
48	Bioaccumulation and Toxicity of ¹³ C-Skeleton Labeled Graphene Oxide in Wheat. Environmental Science & Technology, 2017, 51, 10146-10153.	4.6	100
49	Toxicity of graphene oxide to white moss Leucobryum glaucum. RSC Advances, 2017, 7, 50287-50293.	1.7	18
50	Biological behaviors and chemical fates of Ag2Se quantum dots in vivo: the effect of surface chemistry. Toxicology Research, 2017, 6, 693-704.	0.9	24
51	Preparation and Application of Carboxylated Graphene Oxide Sponge in Dye Removal. International Journal of Environmental Research and Public Health, 2017, 14, 1301.	1.2	36
52	Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice. International Journal of Molecular Sciences, 2017, 18, 2562.	1.8	37
53	Skeleton labeled ¹³ C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes. International Journal of Nanomedicine, 2017, Volume 12, 4891-4899.	3.3	23
54	Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Materials Chemistry and Physics, 2017, 198, 283-290.	2.0	121

#	Article	IF	CITATIONS
55	Preparation of Fe3O4/TiO2/C Nanocomposites and Their Application in Fenton-Like Catalysis for Dye Decoloration. Catalysts, 2016, 6, 146.	1.6	26
56	Preparation of graphene sponge by vapor phase reduction for oil and organic solvent removal. Materials Research Express, 2016, 3, 105602.	0.8	1
57	Carbon coated titanium electrode for the electrolytic decoloration of methylene blue. Journal of Water Process Engineering, 2016, 13, 183-188.	2.6	3
58	Oneâ€pot modification of Fe 3 O 4 to prepare Fe 3 O 4 /SiO 2 /C nanoparticles and their catalytic activity in Fentonâ€like process for dye decolouration. Micro and Nano Letters, 2016, 11, 675-679.	0.6	8
59	Size and shape controllable preparation of graphene sponge by freezing, lyophilizing and reducing in container. Science China Technological Sciences, 2016, 59, 709-713.	2.0	4
60	Graphene/polyester staple composite for the removal of oils and organic solvents. Materials Research Express, 2016, 3, 065601.	0.8	4
61	Bioaccumulation of ¹³ C-fullerenol nanomaterials in wheat. Environmental Science: Nano, 2016, 3, 799-805.	2.2	43
62	Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of Near-Infrared Quantum Dots Ag ₂ Se in Mice. ACS Applied Materials & Interfaces, 2016, 8, 17859-17869.	4.0	68
63	Fe ₃ O ₄ /SiO ₂ /C nanocomposite as a high-performance Fenton-like catalyst in a neutral environment. RSC Advances, 2016, 6, 8594-8600.	1.7	27
64	One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Applied Surface Science, 2016, 362, 56-62.	3.1	77
65	Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews, 2016, 320-321, 66-81.	9.5	122
66	Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere, 2016, 151, 324-331.	4.2	77
67	Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Particle and Fibre Toxicology, 2015, 13, 14.	2.8	23
68	Quantification of sp2 carbon nanomaterials in biological systems: pharmacokinetics, biodistribution and ecological uptake. Reviews in Inorganic Chemistry, 2015, 35, 225-247.	1.8	8
69	TiO2–graphene sponge for the removal of tetracycline. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	33
70	Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. Journal of Hazardous Materials, 2015, 286, 449-456.	6.5	100
71	Magnetic graphene sponge for the removal of methylene blue. Applied Surface Science, 2015, 351, 765-771.	3.1	80
72	TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Science China Technological Sciences, 2015, 58, 858-863.	2.0	20

#	Article	IF	CITATIONS
73	Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448, 347-355.	5.0	42
74	The isotopic effects of ¹³ C-labeled large carbon cage (C ₇₀) fullerenes and their formation process. RSC Advances, 2015, 5, 76949-76956.	1.7	14
75	Fe ₃ O ₄ @SiO ₂ nanoparticles as a high-performance Fenton-like catalyst in a neutral environment. RSC Advances, 2015, 5, 5458-5463.	1.7	66
76	Carbon Nanoparticles as Recyclable Adsorbent for the Removal of Copper Ions. Nanoscience and Nanotechnology Letters, 2014, 6, 87-93.	0.4	6
77	Molecular Toxicity of Nanomaterials. Journal of Biomedical Nanotechnology, 2014, 10, 2828-2851.	0.5	33
78	Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. Journal of Environmental Chemical Engineering, 2014, 2, 907-913.	3.3	74
79	Quantification of carbon nanomaterials in vivo: direct stable isotope labeling on the skeleton of fullerene C ₆₀ . Environmental Science: Nano, 2014, 1, 64-70.	2.2	26
80	Porous graphene oxide–chitosan aerogel for tetracycline removal. Materials Research Express, 2014, 1, 015601.	0.8	45
81	Carbon Nanoparticles Trapped in Vivo—Similar to Carbon Nanotubes in Time-Dependent Biodistribution. ACS Applied Materials & Interfaces, 2014, 6, 14672-14678.	4.0	30
82	Facile hydrothermal preparation of S-doped Fe3O4@C nanoparticles for Cu2+ removal. Materials Letters, 2014, 135, 154-157.	1.3	12
83	Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances, 2014, 4, 10791.	1.7	298
84	Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Science Bulletin, 2014, 59, 3406-3412.	1.7	37
85	Fabrication of TiO ₂ -Graphene Oxide Aerogel for the Adsorption of Copper lons. Nanoscience and Nanotechnology Letters, 2014, 6, 1018-1023.	0.4	15
86	Preparation and spectra of ¹³ C-enriched fullerene. Chinese Science Bulletin, 2014, 59, 905-912.	0.4	10
87	Preparation of graphene adsorbents and their applications in water purification. Reviews in Inorganic Chemistry, 2013, 33, 139-160.	1.8	56
88	Template-directed self-assembly of a designed amphiphilic hexapeptide on mica surface. Colloid and Polymer Science, 2013, 291, 2263-2270.	1.0	7
89	Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. Journal of Environmental Chemical Engineering, 2013, 1, 1044-1050.	3.3	179
90	Proteins: Biosafety and Bioapplication of Nanomaterials by Designing Protein–Nanoparticle Interactions (Small 9–10/2013). Small, 2013, 9, 1414-1414.	5.2	6

#	Article	IF	CITATIONS
91	Biodistribution of multi-walled carbon nanotubes functionalized by hydroxyl terminated poly(ethylene glycol) in mice. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1181-1186.	0.7	8
92	Biosafety and Bioapplication of Nanomaterials by Designing Protein–Nanoparticle Interactions. Small, 2013, 9, 1635-1653.	5.2	230
93	Carbon "quantum―dots for optical bioimaging. Journal of Materials Chemistry B, 2013, 1, 2116.	2.9	708
94	Quantification of Carbon Nanomaterials <i>in Vivo</i> . Accounts of Chemical Research, 2013, 46, 750-760.	7.6	63
95	Acute toxicity of zinc oxide nanoparticles to the rat olfactory system after intranasal instillation. Journal of Applied Toxicology, 2013, 33, 1079-1088.	1.4	42
96	Graphene Oxide/Chitosan Composite for Methylene Blue Adsorption. Nanoscience and Nanotechnology Letters, 2013, 5, 372-376.	0.4	33
97	Fluorescent Carbon Dots and Nanodiamonds for Biological Imaging: Preparation, Application, Pharmacokinetics and Toxicity. Current Drug Metabolism, 2012, 13, 1046-1056.	0.7	75
98	Carbon Nanoparticles for Cationic Dye (Methylene Blue) Removal from Aqueous Solution. Nanoscience and Nanotechnology Letters, 2012, 4, 839-842.	0.4	7
99	Adsorption behaviour of methylene blue on carbon nanoparticles. Micro and Nano Letters, 2012, 7, 1060-1063.	0.6	9
100	Cytotoxicity and TNF- <i>α</i> Secretion in RAW264.7 Macrophages Exposed to Different Fullerene Derivatives. Journal of Nanoscience and Nanotechnology, 2012, 12, 2169-2178.	0.9	12
101	Competitive Performance of Carbon "Quantum―Dots in Optical Bioimaging. Theranostics, 2012, 2, 295-301.	4.6	167
102	Bioavailability and preliminary toxicity evaluations of alumina nanoparticles in vivo after oral exposure. Toxicology Research, 2012, 1, 69-74.	0.9	19
103	Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine, 2012, 7, 1801-1812.	1.7	184
104	Pharmacokinetics, Metabolism and Toxicity of Carbon Nanotubes for Biomedical Purposes. Theranostics, 2012, 2, 271-282.	4.6	147
105	Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2012, 97, 62-69.	2.5	61
106	Diameter-selective dispersion of double-walled carbon nanotubes by lysozyme. Nanoscale, 2011, 3, 970.	2.8	36
107	In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 2011, 200, 201-210.	0.4	1,149
108	Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere, 2011, 82, 621-626.	4.2	24

#	Article	IF	CITATIONS
109	Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 2011, 359, 24-29.	5.0	602
110	Toxicity of Nano Gamma Alumina to Neural Stem Cells. Journal of Nanoscience and Nanotechnology, 2011, 11, 7848-7856.	0.9	27
111	Advances in Biodistribution Study and Tracing Methodology of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 8469-8481.	0.9	24
112	Fullerene-Conjugated Doxorubicin in Cells. ACS Applied Materials & amp; Interfaces, 2010, 2, 1384-1389.	4.0	81
113	Cytotoxicity of Zinc Oxide Nanoparticles: Importance of Microenvironment. Journal of Nanoscience and Nanotechnology, 2010, 10, 8638-8645.	0.9	65
114	A Facile Method To Encapsulate Proteins in Silica Nanoparticles: Encapsulated Green Fluorescent Protein as a Robust Fluorescence Probe. Angewandte Chemie - International Edition, 2010, 49, 3022-3025.	7.2	60
115	Bandgapâ€Like Strong Fluorescence in Functionalized Carbon Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 5310-5314.	7.2	549
116	Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 2010, 351, 122-127.	5.0	517
117	CYTOTOXICITY EVALUATIONS OF FLUORESCENT CARBON NANOPARTICLES. Nano LIFE, 2010, 01, 153-161.	0.6	35
118	Influences of the Size and Hydroxyl Number of Fullerenes/Fullerenols on Their Interactions with Proteins. Journal of Nanoscience and Nanotechnology, 2010, 10, 6298-6304.	0.9	42
119	Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond and Related Materials, 2010, 19, 291-299.	1.8	138
120	Biodefunctionalization of Functionalized Single-Walled Carbon Nanotubes in Mice. Biomacromolecules, 2009, 10, 2009-2012.	2.6	40
121	Selective Interactions of Sugar-Functionalized Single-Walled Carbon Nanotubes with Bacillus Spores. ACS Nano, 2009, 3, 3909-3916.	7.3	43
122	Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society, 2009, 131, 11308-11309.	6.6	1,341
123	Aqueous Compatible Fullereneâ^'Doxorubicin Conjugates. Journal of Physical Chemistry C, 2009, 113, 17768-17773.	1.5	50
124	Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. Journal of Physical Chemistry C, 2009, 113, 18110-18114.	1.5	829
125	Covalently PEGylated Carbon Nanotubes with Stealth Character In Vivo. Small, 2008, 4, 940-944.	5.2	153
126	Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181, 182-189.	0.4	409

#	Article	IF	CITATIONS
127	Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology, 2008, 19, 395101.	1.3	60
128	Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology, 2008, 2, 28-32.	1.6	41
129	A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology, 2008, 19, 075101.	1.3	69
130	Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivoâ€. Journal of Physical Chemistry C, 2007, 111, 17761-17764.	1.5	225
131	Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45, 1419-1424.	5.4	251